Skip to main content
Log in

Fluorescent Double Network Hydrogels with Ionic Responsiveness and High Mechanical Properties for Visual Detection

  • Organic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection. The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network, while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network. The double-network structure, the introduction of nanoparticles and the reversible ionic cross-linked interactions confer high mechanical properties to the hydrogel. Terbium ions are not only used as the ionic cross-linked points, but also used as green emitters to endow hydrogels with fluorescent properties. On the basis of the “antenna effect” of terbium ions and the ion exchange interaction, the fluorescence of the hydrogels can make selective responses to various ions (such as organic acid radical ions, transition metal ions) in aqueous solutions, which enables a convenient strategy for visual detection toward ions. Consequently, the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y Zhao, C Shi, X Yang, et al. pH- and Temperature-Sensitive Hydrogel Nanoparticles with Dual Photoluminescence for Bioprobes[J]. ACS Nano, 2016, 10(6): 5 856–5 863

    Article  CAS  Google Scholar 

  2. Zhang SW, Han DD, Ding ZX, et al. Fabrication and Characterization of One Interpenetrating Network Hydrogel Based on Sodium Alginate and Polyvinyl Alcohol[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2019, 34(3): 744–751

    Article  CAS  Google Scholar 

  3. Zhang YS, Khademhosseini A. Advances in Engineering Hydrogels[J]. Science, 2017, 356(6337): eaaf3667

    Article  Google Scholar 

  4. Jiang C, Wen BY, Fan BM, et al. A Tremella-like Mesoporous Calcium Silicate Loaded by TiO2 with Robust Adsorption and Photocatalytic Degradation Capabilities[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2022, 37(2): 184–193

    Article  CAS  Google Scholar 

  5. HaqAsif A, Karnakar RR, Sreeharsha N, et al. pH and Salt Responsive Hydrogel Based on Guar Gum as A Renewable Material for Delivery of Curcumin: A Natural Anti-Cancer Drug[J]. J. Polym. Environ.., 2021, 29(6): 1 978–1 989

    Article  CAS  Google Scholar 

  6. Chen JJ, Li F, Li ZZ, et al. Encapsulation of Carotenoids in Emulsion-Based Delivery Systems: Enhancement of Beta-Carotene Water-Dispersibility and Chemical Stability[J]. Food Hydrocoll., 2017, 69: 49–55

    Article  CAS  Google Scholar 

  7. Lee EM, Gwon SY, Hwang IJ, et al. Ionic Comonomer Effect of Poly (N-Isopropylacrylamide) Copolymer Containing D-π-A Type Pyran-Based Fluorescent Dye[J]. Spectrochim. Acta A, 2012, 92: 33–36

    Article  CAS  Google Scholar 

  8. Zhang YY, Wu M, Chen J, et al. Tough, High Stretched, Self-healing C-dots/Hydrophobically Associated Composited Hydrogels and Their Use for a Fluorescence Sensing Platform[J]. Chemistryselect, 2018, 3(21): 5 756–5 765

    Article  CAS  Google Scholar 

  9. Zhang ZJ, Wang J, Nie X, et al. Near Infrared Laser-Induced Targeted Cancer Therapy Using Thermoresponsive Polymer Encapsulated Gold Nanorods[J]. J. Am. Chem. Soc., 2014, 136(20): 7 317–7 326

    Article  CAS  Google Scholar 

  10. Cheng C, Gao Y, Song W H, et al. Halloysite Nanotube-Based H2O2-Responsive Drug Delivery System with A Turn on Effect on Fluorescence for Real-Time Monitoring[J]. Chem. Eng. J., 2020, 380: 122 474

    Article  CAS  Google Scholar 

  11. Zhang XY, Zheng Y, Liu CH, et al. Facile and Large Scale in situ Synthesis of the Thermal Responsive Fluorescent SiNPs/PNIPAM Hydrogels[J]. RSC Adv., 2016, 6(60): 55 666–55 670

    Article  CAS  Google Scholar 

  12. Xiang G, Lippens E, Hafeez S, et al. Oxidized Alginate Beads for Tunable Release of Osteogenically Potent Mesenchymal Stromal Cells[J]. Mat. Sci. Eng. C-Mater., 2019, 104: 109 911

    Article  CAS  Google Scholar 

  13. Weng GS, Thanneeru S, He J. Dynamic Coordination of Eu-Iminodiacetate to Control Fluorochromic Response of Polymer Hydrogels to Multistimuli[J]. Adv. Mater., 2018, 30(11): 1 706 526

    Google Scholar 

  14. Li JF, Li W Z, Xia DD, et al. Dynamic Coordination of Natural Amino Acids-Lanthanides to Control Reversible Luminescent Switching of Hybrid Hydrogels and Anti-Counterfeiting[J]. Dyes Pigments, 2019, 166: 375–380

    Article  CAS  Google Scholar 

  15. Dong JX, Song XF, Shi Y, et al. A Potential Luminescent Probe: Maillard Reaction Product from Glutathione and Ascorbic Acid for Rapid and Label-Free Dual Detection of Hg2+ and Biothiols[J]. Biosens. Bioelectron., 2016, 81: 473–479

    Article  CAS  PubMed  Google Scholar 

  16. She MY, Wu SP, Wang ZH, et al. Exploration of Congeneric Hg(II)-Mediated Chemosensors Driven by S-Hg Affinity, and Their Application in Living System[J]. Sensor. Actuat. B-Chem., 2017, 247: 129–138

    Article  CAS  Google Scholar 

  17. Liu Q, Microchem J. Determination of Mercury and Methylmercury in Seafood by Ionchromatography Using Photo-Induced Chemical Vapor Generation Atomic Photoluminescence Spectrometric Detection[J]. Microchem. J., 2010, 95(2): 255–258

    Article  CAS  Google Scholar 

  18. Zhang S X, Yin W D, Yang Z M, et al. Functional Copolymers Married with Lanthanide(III) Ions: A Win-Win Pathway to Fabricate Rare Earth Fluorescent Materials with Multiple Applications[J]. ACS Appl. Mater. Interfaces, 2021, 13(4): 5 539–5 550

    Article  CAS  Google Scholar 

  19. Zhao D, Yang J, Tian X L, et al. Self-Healing Metallo-Supramolecular Polymers Showing Luminescence off/on Switching Based on Lanthanide Ions and Terpyridine Moieties[J]. Chem. Eng. J., 2022, 434: 134 806

    Article  CAS  Google Scholar 

  20. Zhu QD, Zhang LH, Van Vliet K, et al. White Light-Emitting Multistimuli-Responsive Hydrogels with Lanthanides and Carbon Dots[J]. ACS Appl. Mater. Interfaces, 2018, 10(12): 10 409–10 418

    Article  CAS  Google Scholar 

  21. Yu KL, Wang Q, Xiang WQ, et al. A Amino-Functionalized Single-Lanthanide Metal-Organic Framework as a Ratiometric Fluorescent Sensor for Quantitative Visual Detection of Fluoride Ions[J]. Inorg. Chem., 2022, 61(34): 13 627–13 636

    Article  CAS  Google Scholar 

  22. Chen JW, Yang ZK, Shi D J, et al. High Strength and Toughness of Double Physically Cross-Linked Hydrogels Composed of Polyvinyl Alcohol and Calcium Alginate[J]. J. Appl. Polym. Sci., 2021, 138(10): e49987

    Article  Google Scholar 

  23. Liu XY, He X, Yang B, et al. Dual Physically Cross-Linked Hydrogels Incorporating Hydrophobic Interactions with Promising Repairability and Ultrahigh Elongation[J]. Adv. Funct. Mater., 2020, 31(3): 2 008 187

    Google Scholar 

  24. Gao YJ, Yu LT, Yeo JC, et al. Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability[J]. Adv. Mater., 2020, 32(15): 1 902 133

    Google Scholar 

  25. Hu MF, Gao Y, Jiang YJ, et al. High-Performance Strain Sensors Based on Bilayer Carbon Black/PDMS Hybrids[J]. Adv. Compos. Hybrid Ma., 2021, 4(3): 514–520

    Article  CAS  Google Scholar 

  26. Yang BW, Yuan W. Highly Stretchable and Transparent Double-Network Hydrogel Ionic Conductors as Flexible Thermal-Mechanical Dual Sensors and Electroluminescent Devices[J]. ACS Appl. Mater. Interfaces, 2019, 11(18): 16 765–16 775

    Article  CAS  Google Scholar 

  27. Cui W, Zhang ZJ, Li H, et al. Robust Dual Physically Cross-Linked Hydrogels with Unique Self-Reinforcing Behavior and Improved Dye Adsorption Capacity[J]. RSC Adv., 2015, 5(65): 52 966–52 977

    Article  CAS  Google Scholar 

  28. Gaharwar AK, Rivera CP, Wu CJ, et al. Transparent, Elastomeric and Tough Hydrogels from Poly (Ethylene Glycol) and Silicate Nanoparticles[J]. Acta Biomater., 2011, 7(12): 4 139–4 148

    Article  CAS  Google Scholar 

  29. Felbeck T, Mundinger S, Lezhnina MM, et al. Multifold Fluorescence Enhancement in Nanoscopic Fluorophore-Clay Hybrids in Transparent Aqueous Media[J]. Chem. Eur. J., 2015, 21: 7 582–7 587

    Article  CAS  Google Scholar 

  30. Li HR, Li M, Wang YL, et al. Luminescent Hybrid Materials Based on Laponite Clay[J]. Chem. Eur. J., 2014, 20(33): 10 392–10 396

    Article  CAS  Google Scholar 

  31. Liu XY, Niu XF, Fu ZN, et al. A Facile Approach to Obtain Highly Tough and Stretchable LAPONITE®-Based Nanocomposite Hydrogels[J]. Soft Matter, 2022, 16(36): 8 394–8 399

    Article  Google Scholar 

  32. Szabo L, Gerber-Lemaire S, Wandrey C. Strategies to Functionalize the Anionic Biopolymer Na-Alginate without Restricting Its Polyelectrolyte Properties[J]. Polym., 2020, 12(4): 919

    Article  CAS  Google Scholar 

  33. Li JF, Li WZ, Xia DD, et al. Dynamic Coordination of Natural Amino Acids-Lanthanides to Control Reversible Luminescent Switching of Hybrid Hydrogels and Anti-Counterfeiting[J]. Dyes Pigments, 2019, 166: 375–380

    Article  CAS  Google Scholar 

  34. Martin-Ramos P, Lavin V, Silva MR, et al. Novel Erbium(iii) Complexes with 2,6-Dimethyl-3,5-Heptanedione and Different N,N-donor Ligands for Ormosil and PMMA Matrices Doping[J]. J. Mater. Chem. C, 2013, 1(36): 5 701–5 710

    Article  CAS  Google Scholar 

  35. Cao X, Liu HZ, Yang XH, et al. Halloysite Nanotubes@Polydopamine Reinforced Polyacrylamide-Gelatin Hydrogels with NIR Light Triggered Shape Memory and Self-Healing Capability[J]. Compos. Sci. Technol., 2020, 191: 108 071

    Article  CAS  Google Scholar 

  36. Tan Y, Xu SM, Wu RL, et al. A Gradient Laponite-Crosslinked Nanocomposite Hydrogel with Anisotropic Stress and Thermo-Response[J]. Appl. Clay Sci., 2017, 148: 77–82

    Article  CAS  Google Scholar 

  37. Zhao LZ, Zhou CH, Wang J, et al. Recent Advances in Clay Mineral-Containing Nanocomposite Hydrogels[J]. Soft Matter, 2015, 11(48): 9 229–9 246

    Article  CAS  Google Scholar 

  38. Buenzli, Jean-Claude G. On the Design of Highly Luminescent Lanthanide Complexes[J]. Coordin. Chem. Rev., 2015, 293: 19–47

    Article  Google Scholar 

  39. Xu YS, Zhang XX, Zhang WJ, et al. Fluorescent Detector for NH3 Based on Responsive Europium(III)-Salicylic Acid Complex Hydrogels[J]. J. Photoch. Photobio. A, 2021, 404: 112 901

    Article  CAS  Google Scholar 

  40. Roma-Luciow R, Sarraf L, Morcellet M. Complexes of Poly(Acrylic Acid) with Some Divalent, Trivalent and Tetravalent Metal Ions[J]. Eur. Polym. J., 2001, 37(9): 1 741–1 745

    Article  CAS  Google Scholar 

  41. Li L, Dong XG, Liu ZF, et al. Visual and Ultrasensitive Detection of Mercury Ions Based on Urease Catalysis and Responsive Photonic Crystals[J]. Dyes Pigments, 2021, 195: 109 676

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Chen  (陈艳军).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the National Natural Science Foundation of China (No.51873167), and the National Innovation and Entrepreneurship Training Program for College Students (No. 226801001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Liu, L., Lü, H. et al. Fluorescent Double Network Hydrogels with Ionic Responsiveness and High Mechanical Properties for Visual Detection. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 487–496 (2024). https://doi.org/10.1007/s11595-024-2904-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-024-2904-8

Key words

Navigation