Skip to main content
Log in

Simulation of Dynamic Recrystallization in 7075 Aluminum Alloy Using Cellular Automaton

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys. We have developed a cellular automaton (CA) based model to simulate the microstructural evolution in 7075 aluminum alloy during hot deformation. Isothermal compression tests were conducted to obtain material parameters for 7075 aluminum alloy, leading to the establishment of models for dislocation density, nucleation of recrystallized grains, and grain growth. Integrating these aspects with grain topological deformation, our CA model effectively predicts flow stress, dynamic recrystallization (DRX) volume fraction, and average grain size under diverse deformation conditions. A systematic comparison was made between electron back scattered diffraction (EBSD) maps and CA model simulated under different deformation temperatures (573 to 723 K), strain rates (0.001 to 1 s−1), and strain amounts (30% to 70%). These analyses indicate that large strain, high temperature, and low strain rate facilitate dynamic recrystallization and grain refinement. The results from the CA model show good accuracy and predictive capability, with experimental error within 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Starke Jr E A, and Staley JT. Application of Modern Aluminum Alloys to Aircraft[J]. Progress in Aerospace Sciences, 1996, 32(2–3): 131–172

    Article  Google Scholar 

  2. Yoshio Y. Extra Super Duralumin and Successive Aluminum Alloys for Aircraft[J]. J. Jpn. Inst. Light Met., 2015, 39: 379

    Google Scholar 

  3. Miller W, Zhuang L, Bottema J, et al. Recent Development in Aluminium Alloys for the Automotive Industry[J]. Materials Science and Engineering: A, 2000, 280(1): 37–49

    Article  Google Scholar 

  4. Yang X, Zhao X, Chu Z, et al. Effect of Solutionizing and Aging on Microstructure and Mechanical Properties of Warm-rolled 7075 Alloy[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2023, 38(2): 408–415

    Article  CAS  Google Scholar 

  5. Yang S, Li Z, Zhou Y, et al. Edge-crack Free and High Mechanical Properties of AA7075 Sheets by Using Cryorolling and Subsequent Aging[J]. Journal of Alloys and Compounds, 2023, 931: 167 556

    Article  CAS  Google Scholar 

  6. Sun Y, Wang Y, Su Y, et al. Microstructure and Mechanical Properties of Al-5Cu-4.5 Mg-2.5 Zn Squeeze Cast Alloy[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2022, 37(5): 977–985

    Article  CAS  Google Scholar 

  7. Sun ZC, Zheng LS, Yang H. Softening Mechanism and Microstructure Evolution of As-extruded 7075 Aluminum Alloy During Hot Deformation[J]. Materials Characterization, 2014, 90: 71–80

    Article  CAS  Google Scholar 

  8. Li DF, Zhang DZ, Liu SD, et al. Dynamic Recrystallization Behavior of 7085 Aluminum Alloy during Hot Deformation[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1 491–1 497

    Article  CAS  Google Scholar 

  9. Chen L Q. Phase-field Models for Microstructure Evolution[J]. Annual Review of Materials Research, 2002, 32(1): 113–140

    Article  CAS  Google Scholar 

  10. Tourret D, Liu H, LLorca J. Phase-field Modeling of Microstructure Evolution: Recent Applications, Perspectives and Challenges[J]. Progress in Materials Science, 2022, 123: 100 810

    Article  CAS  Google Scholar 

  11. Peczak P. A Monte Carlo Study of Influence of Deformation Temperature on Dynamic Recrystallization[J]. Acta Metallurgica et Materialia, 1995, 43(3): 1 279–1 291

    Article  CAS  Google Scholar 

  12. Noii N, Khodadadian A, Aldakheel F. Probabilistic Failure Mechanisms via Monte Carlo Simulations of Complex Microstructures[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 399: 115 358

    Article  Google Scholar 

  13. Zhang J, Li Z, Wen K, et al. Simulation of Dynamic Recrystallization for an Al-Zn-Mg-Cu Alloy Using Cellular Automaton[J]. Progress in Natural Science: Materials International, 2019, 29(4): 477–484

    Article  CAS  Google Scholar 

  14. Subramanian, R S, Shree, R S, Amos, P K. Cellular-Automata Based Simulation of Dynamic Recrystallization and Statistical Analysis of Resulting Grain Growth. In: Asian Symposium on Cellular Automata Technology. Springer Nature Singapore, 2022: 153–166

    Chapter  Google Scholar 

  15. Goetz R, Seetharaman V. Modeling Dynamic Recrystallization Using Cellular Automata[J]. Scripta Materialia, 1998, 38(3): 405–413

    Article  CAS  Google Scholar 

  16. Huang CQ, Jia XD, Zhang ZW. Modeling and Simulation of the Static Recrystallization of 5754 Aluminium Alloy by Cellular Automaton[J]. Metals, 2018, 8(8): 585

    Article  Google Scholar 

  17. Zhang T, Lu SH, Wu YX, et al. Optimization of Deformation Parameters of Dynamic Recrystallization for 7055 Aluminum Alloy by Cellular Automaton[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1 327–1 337

    Article  CAS  Google Scholar 

  18. Liu L, Wu Y, Ahmad AS. A Novel Simulation of Continuous Dynamic Recrystallization Process for 2219 Aluminium Alloy Using Cellular Automata Technique[J]. Materials Science and Engineering: A, 2021, 815: 141 256

    Article  CAS  Google Scholar 

  19. Mirdar M, Serajzadeh S. Simulation of Microstructural Changes after Hot Deformation of Aluminum-magnesium Alloy Using Cellular Automata[J]. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2023, 1–14

  20. Sellars C, Tegart WM. Hot Workability[J]. International Metallurgical Reviews, 1972, 17(1): 1–24

    Article  CAS  Google Scholar 

  21. Mecking H, Kocks U. Kinetics of Flow and Strain-hardening[J]. Acta Metallurgica, 1981, 29(11): 1 865–1 875

    Article  CAS  Google Scholar 

  22. Ding R, Guo Z. Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization[J]. Acta Materialia, 2001, 49(16): 3 163–3 175

    Article  CAS  Google Scholar 

  23. Wang L, Fang G, Qian L. Modeling of Dynamic Recrystallization of Magnesium Alloy Using Cellular Automata Considering Initial Topology of Grains[J]. Materials Science and Engineering: A, 2018, 711: 268–283

    Article  CAS  Google Scholar 

  24. Lee HW, Im YT. Numerical Modeling of Dynamic Recrystallization During Nonisothermal Hot Compression by Cellular Automata and Finite Element Analysis[J]. International Journal of Mechanical Sciences, 2010, 52(10): 1 277–1 289

    Article  Google Scholar 

  25. Roberts W, Ahlblom B. A Nucleation Criterion for Dynamic Recrystallization During Hot Working[J]. Acta Metallurgica, 1978, 26(5): 801–813

    Article  CAS  Google Scholar 

  26. Duan XW, Wang M, Che X, et al. Cellular Automata Coupled Finite Element Simulation for Dynamic Recrystallization of Extruded AZ80A Magnesium Alloy[J]. Journal of Materials Science, 2023, 58(3): 1 345–1 367

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajie Li  (李亚杰).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the Central Government Guides Local Funds for Science and Technology Development (No.YDZJSX20231A045), and the Fundamental Research Program of Shanxi Province (Nos.202103021223288 and 202103021224282)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Shi, D., Li, Y. et al. Simulation of Dynamic Recrystallization in 7075 Aluminum Alloy Using Cellular Automaton. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 425–435 (2024). https://doi.org/10.1007/s11595-024-2898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-024-2898-2

Key words

Navigation