Skip to main content
Log in

Nickel Sulfide Modified NiCu Nanoalloy with Excellent Oxygen Evolution Reaction Properties Prepared through Electrospinning and Heat Treatment

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Ni2+/Cu2+/SO42−/polyvinyl alcohol precursor fibers with uniform diameters were prepared through electrospinning. Nickel-based composite nanoalloys containing Ni, Cu, and S were prepared through heat treatment in an Ar atmosphere. The experimental results show that the main components of the prepared nanoalloys are NiCu, Ni3S2, Ni, and C. The nanoalloys exhibit fine grain sizes about 200–500 nm, which can increase with increasing heat treatment temperature. Electrochemical test results show that the nickel sulfide-modified NiCu nanoalloy composites exhibit excellent oxygen evolution reaction properties, and the oxygen evolution reaction properties gradually improve with the increasing heat treatment temperature. The sample prepared at 1 000 °C for 40 min show a low overpotential of 423 mV and a small Tafel slope of 134 mV·dec−1 at a current density of 10 mA·cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu S, Majumdar A. Opportunities and Challenges for a Sustainable Energy Future[J]. Nature, 2012, 488(7411): 294–303

    Article  CAS  PubMed  Google Scholar 

  2. Larcher D, Tarascon JM. Towards Greener and More Sustainable Batteries for Electrical Energy Storage[J]. Nat. Chem., 2015, 7(1): 19–29

    Article  CAS  PubMed  Google Scholar 

  3. Matsumoto Y, Sato E. Electrocatalytic Properties of Transition Metal Oxides for Oxygen Evolution Reaction[J]. Mater. Chem. Phys., 1986, 14(5): 397–426

    Article  CAS  Google Scholar 

  4. Yang C, Rousse G, Louise Svane K, et al. Cation Insertion to Break the Activity/Stability Relationship for Highly Active Oxygen Evolution Reaction Catalyst[J]. Nat. Commun., 2020, 11(1): 1 378

    Article  CAS  Google Scholar 

  5. Wang H, Zhang KHL, Hofmann JP, et al. The Electronic Structure of Transition Metal Oxides for Oxygen Evolution Reaction[J]. J. Mater. Chem. A, 2021, 9(35): 19 465–19 488

    Article  CAS  Google Scholar 

  6. Wu ZY, Chen FY, Li B, et al. Non-iridium-Based Electrocatalyst for Durable Acidic Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolysis[J]. Nat. Mater., 2023, 22(1): 100–108

    Article  CAS  PubMed  Google Scholar 

  7. Cui C, Gan L, Heggen M, et al. Compositional Segregation in Shaped Pt Alloy Nanoparticles and Their Structural Behaviour During Electrocatalysis[J]. Nat. Mater., 2013, 12(8): 765–771

    Article  CAS  PubMed  Google Scholar 

  8. Cheng Q, Hu C, Wang G, et al. Carbon-Defect-Driven Electroless Deposition of Pt Atomic Clusters for Highly Efficient Hydrogen Evolution[J]. J. Am. Chem. Soc., 2020, 142(12): 5 594–5 601

    Article  CAS  Google Scholar 

  9. Li W, Liu Y, Wu M, et al. Carbon-Quantum-Dots-Loaded Ruthenium Nanoparticles as an Efficient Electrocatalyst for Hydrogen Production in Alkaline Media[J]. Adv. Mater., 2018, 30(31): e1800676

    Article  PubMed  Google Scholar 

  10. Barhoum A, El-Maghrabi H H, Iatsunskyi I, et al. Atomic Layer Deposition of Pd Nanoparticles on Self-Supported Carbon-Ni/NiO-Pd Nanofiber Electrodes for Electrochemical Hydrogen and Oxygen Evolution Reactions[J]. J. Colloid Interface Sci., 2020, 569: 286–297

    Article  CAS  PubMed  Google Scholar 

  11. Huang WH, Li XM, Yu DY, et al. CoMo-Bimetallic N-Doped Porous Carbon Materials Embedded with Highly Dispersed Pt Nanoparticles as pH-Universal Hydrogen Evolution Reaction Electrocatalysts[J]. Nanoscale, 2020, 12(38): 19 804–19 813

    Article  CAS  Google Scholar 

  12. Peng J, Dong W, Wang Z, et al. Recent Advances in 2D Transition Metal Compounds for Electrocatalytic Full Water Splitting in Neutral Media[J]. Mater. Today Adv., 2020, 8: 100 081

    Article  Google Scholar 

  13. Yu M, Budiyanto E, Tüysüz H. Principles of Water Electrolysis and Recent Progress in Cobalt-, Nickel-, and Iron-Based Oxides for the Oxygen Evolution Reaction[J]. Angew. Chem. Int. Ed., 2022, 61(1): e202103824

    Article  CAS  Google Scholar 

  14. Zhang JW, Zhang H, Ren TZ, et al. FeNi Doped Porous Carbon as an Efficient Catalyst for Oxygen Evolution Reaction[J]. Front. Chem. Sci. Eng., 2021, 15(2): 279–287

    Article  Google Scholar 

  15. Gautam RP, Pan H, Chalyavi F, et al. Nanostructured Ni-Cu Electrocatalysts for the Oxygen Evolution Reaction[J]. Catal. Sci. Technol., 2020, 10(15): 4 960–4 967

    Article  CAS  Google Scholar 

  16. Wang X, Yang M, Feng W, et al. Significantly Enhanced Oxygen Evolution Reaction Performance by Tuning Surface States of Co through Cu Modification in Alloy Structure[J]. J. Electroanal. Chem., 2021, 903: 115 823

    Article  CAS  Google Scholar 

  17. Chen ZJ, Cao GX, Gan LY, et al. Highly Dispersed Platinum on Honeycomb-Like NiO@Ni Film as a Synergistic Electrocatalyst for the Hydrogen Evolution Reaction[J]. ACS Catal., 2018, 8(9): 8 866–8 872

    Article  CAS  Google Scholar 

  18. Sun J, Zhou H, Song P, et al. Cuprous Sulfide Derived CuO Nanowires as Effective Electrocatalyst for Oxygen Evolution[J]. Appl. Surf. Sci., 2021, 547: 149 235

    Article  CAS  Google Scholar 

  19. Lin Y, Yang G, Fu Y, et al. CoO/MnO Heterostructure on Three-Dimensional Nickel Foam as Efficient Electrocatalyst for Oxygen Evolution Reaction[J]. J. Phys. Chem. Solids, 2022, 160: 110 373

    Article  CAS  Google Scholar 

  20. Danilovic N, Subbaraman R, Strmcnik D, et al. Enhancing the Alkaline Hydrogen Evolution Reaction Activity Through the Bifunctionality of Ni(OH)2/Metal Catalysts[J]. Angew. Chem., 2012, 51(50): 12 495–12498

    Article  CAS  Google Scholar 

  21. Hu J, Liang YQ, Wu SL, et al. Hierarchical Nickle-Iron Layered Double Hydroxide Composite Electrocatalyst for Efficient Oxygen Evolution Reaction[J]. Mater. Today Nano, 2022, 17: 100 150

    Article  CAS  Google Scholar 

  22. Jin J, Ge J, Zhao X, et al. An Amorphous NiCuFeP@ Cu3P Nanoarray for an Efficient Hydrogen Evolution[J]. Inorg. Chem. Front., 2022, 9(7): 1 446–1 455

    Article  CAS  Google Scholar 

  23. Wang D, Xie Y, Wu Z. Amorphous Phosphorus Doped MoS2 Catalyst for Efficient Hydrogen Evolution[J]. Nanotechnology, 2019, 30(20): 205 401

    Article  CAS  Google Scholar 

  24. Wang J, Zhang M, Yang G, et al. Heterogeneous Bimetallic MoNiPx/NiSy as a Highly Efficient Electrocatalyst for Robust Overall Water Splitting[J]. Adv. Funct. Mater., 2021, 31(33): 2 101 532

    Article  CAS  Google Scholar 

  25. Guo Y, Chang X, Fu K, et al. Amorphous Ni/C Nanocomposites from Tandem Plasma Reaction for Hydrogen Evolution[J]. Int. J. Hydrog. Energ., 2019, 44(33): 18 115–18 122

    Article  CAS  Google Scholar 

  26. Yang D, Cao L, Feng L, et al. Controlled Synthesis of V-Doped Heterogeneous M3S2/MS Nanorod Arrays as Efficient Hydrogen Evolution Electrocatalysts[J]. Langmuir, 2021, 37(1): 357–365

    Article  CAS  PubMed  Google Scholar 

  27. Fu Q, Wang X, Han J, et al. Phase-Junction Electrocatalysts Towards Enhanced Hydrogen Evolution Reaction in Alkaline Media[J]. Angew. Chem. Int. Ed., 2021, 60(1): 259–267

    Article  CAS  Google Scholar 

  28. Rani BJ, Pradeepa SS, Hasan ZM, et al. Supercapacitor and OER Activity of Transition Metal (Mo, Co, Cu) Sulphides[J]. J. Phys. Chem. Solids, 2020, 138: 109 240

    Article  Google Scholar 

  29. Xiang W, Tian Q, Zhong C, et al. A Solution-Based Method for Synthesizing Pyrite-Type Ferrous Metal Sulfide Microspheres with Efficient OER Activity[J]. Chem. Asian J., 2020, 15(14): 2 231–2 238

    Article  CAS  Google Scholar 

  30. Chen Q, Fu Y, Jin J, et al. In-Situ Surface Self-Reconstruction in Ternary Transition Metal Dichalcogenide Nanorod Arrays Enables Efficient Electrocatalytic Oxygen Evolution[J]. J. Energy Chem., 2021, 55(4): 10–16

    Article  CAS  Google Scholar 

  31. Li T, Zhong S, Lou Q, et al. Ni3Fe/Ni4S3/Ni/C Mixed Crystal Composite Nanofibers Prepared by Electrospinning and Heat Treatment Methods for Oxygen Evolution[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit, 2023, 38(2): 267–273

    Article  CAS  Google Scholar 

  32. Fakayode OA, Yusuf BA, Zhou C, et al. Simplistic Two-Step Fabrication of Porous Carbon-Based Biomass-Derived Electrocatalyst for Efficient Hydrogen Evolution Reaction[J]. Energ. Convers. Manag., 2021, 227(1): 113 628

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Li  (李涛) or Shuai Ling  (凌帅).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the Doctoral Fund of Chengdu University (No.2081919131) and the Sichuan Science and Technology Program (No.2023YFG0229)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Ling, S., Zhong, S. et al. Nickel Sulfide Modified NiCu Nanoalloy with Excellent Oxygen Evolution Reaction Properties Prepared through Electrospinning and Heat Treatment. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 320–326 (2024). https://doi.org/10.1007/s11595-024-2886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-024-2886-6

Key words

Navigation