Skip to main content
Log in

Preparation of Spherical Tungsten Particles Assisted by Hydrothermal Method

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

We presented a strategy to prepare spherical tungsten powder by the combination of hydrothermal method and H2 reduction process. In hydrothermal process, the micelle of tetraethylammonium bromide (TEAB) act as spherical templates for the deposition of tungsten oxide, whereas the excessive TEAB inhibit the formation of spherical tungsten oxide due to the dense molecular layer of TEAB on the tungsten oxide particles. Citric acid (CA) can control the formation rate and structure of the tungsten oxide when its concentration is more than 0.2 mol/L, because of its ability to coordinate with tungsten atoms. The synergistic effect of TEAB and CA facilitates the formation of spherical tungsten oxide with nanorod crown. After being treated by H2 at 600 and 650 °C, the tungsten oxide particles are reduced to tungsten particles, which maintain the spherical structure of tungsten oxide and have porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li R, Qin M, Huang H, et al. Fabrication of Fine-grained Spherical Tungsten Powder by Radio Frequency (RF) Inductively Coupled Plasma Spheroidization Combined with Jet Milling[J]. Advanced Powder Technology, 2017, 28(12): 3 158–3 163

    Article  CAS  Google Scholar 

  2. Dong Z, Liu N, Ma Z, et al. Preparation of Ultra-fine Grain W-Y2O3 Alloy by an Improved Wet Chemical Method and Two-step Spark Plasma Sintering[J]. Journal of Alloys and Compounds, 2017, 695: 2 969–2 973

    Article  CAS  Google Scholar 

  3. Terentyev D, Vilémová M, Yin C, et al. Assessment of Mechanical Properties of SPS-produced Tungsten Including Effect of Neutron Irradiation[J]. International Journal of Refractory Metals and Hard Materials, 2020, 89: 105 207

    Article  CAS  Google Scholar 

  4. Butler BG, Paramore JD, Ligda JP, et al. Mechanisms of Deformation and Ductility in Tungsten - A Review[J]. International Journal of Refractory Metals and Hard Materials, 2018, 75: 248–261

    Article  CAS  Google Scholar 

  5. Zhang W, Li C. Research of Ultrafine Cemented Carbides for PCB Microdrills[J]. Journal of Wuhan University of Technology-Materials Science, 2021, 36(02): 255–258

    Article  CAS  Google Scholar 

  6. Ren C, Fang ZZ, Koopman M, et al. Methods for Improving Ductility of Tungsten - A Review[J]. International Journal of Refractory Metals and Hard Materials, 2018, 75: 170–183

    Article  CAS  Google Scholar 

  7. Natarajan S, Gopalan V, Rajan RAA, et al. Effect of Rare Earth Metals (Y, La) and Refractory Metals (Mo, Ta, Re) to Improve the Mechanical Properties of W-Ni-Fe Alloy-A Review[J]. Materials, 2021, 14(7): 1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ryu T, Hwang KS, Choi YJ, et al. The Sintering Behavior of Nanosized Tungsten Powder Prepared by a Plasma Process[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(4): 701–704

    Article  CAS  Google Scholar 

  9. Li B, Sun Z, Hou G, et al. The Sintering Behavior of Quasi-spherical Tungsten Nanopowders[J]. International Journal of Refractory Metals and Hard Materials, 2016, 56: 44–50

    Article  Google Scholar 

  10. Li R, Qin M, Liu C, et al. Injection Molding of Tungsten Powder Treated by Jet Mill with High Powder Loading: A Solution for Fabrication of Dense Tungsten Component at Relative Low Temperature[J]. International Journal of Refractory Metals and Hard Materials, 2017, 62: 42–46

    Article  CAS  Google Scholar 

  11. Ziaee M, Crane NB. Binder Jetting: A Review of Process, Materials, and Methods[J]. Additive Manufacturing, 2019, 28: 781–801

    Article  CAS  Google Scholar 

  12. Jiang XL, Boulos MI. Particle Melting, Flattening, and Stacking Behaviors in Induction Plasma Deposition of Tungsten[J]. Transactions of Nonferrous Metals Society of China, 2001, 11(6): 811–816

    CAS  Google Scholar 

  13. Wang LZ, Wu JJ, Zhang DJ. Properties Evolution of Additive Manufacture Used Tungsten Powders Prepared by Radio Frequency Induction Plasma[J]. International Journal of Refractory Metals and Hard Materials, 2017, 67: 90–97

    Article  CAS  Google Scholar 

  14. Sheng YW, Hao JJ, Guo ZM. Study on Spheroidization of Tungsten Powders by RF Plasma Processing[J]. Advanced Materials Research, 2011, 295–297: 135–139

    Article  Google Scholar 

  15. Qiu WT, Li Z, Xiao Z, et al. Sphericizing Tungsten Particles by Means of Localized Preferential Oxidation and Alkaline Washing[J]. Powder Technology, 2012, 228

  16. Wang CC, Jia CC, Gao P, et al. Spherical Modification of Tungsten Oxide Powder and Its Mechanism Analysis[J]. Rare Metals, 2015, 34(3): 183–188

    Article  Google Scholar 

  17. Yang G, Park SJ. Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review[J]. Materials, 2019, 12(7): 1 177

    Article  CAS  Google Scholar 

  18. Pourmasoud S, Eghbali-Arani M, Ameri V, et al. Synthesis of Some Transition MWO4 (M: Mn, Fe, Co, Ni, Cu, Zn, Cd) Nanostructures by Hydrothermal Method[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(9): 8 105–8 144

    CAS  Google Scholar 

  19. Tehrani FS, Ahmadian H, Aliannezhadi M. Hydrothermal Synthesis and Characterization of WO3 Nanostructures: Effect of Reaction Time[J]. Materials Research Express, 2020, 7(1): 015 911

    Article  CAS  Google Scholar 

  20. Fernández-Domene RM, Roselló-Márquez G, Sánchez-Tovar R, et al. Synthesis of WO3 Nanorods Through Anodization in the Presence of Citric Acid: Formation Mechanism, Properties and Photoelectrocatalytic Performance[J]. Surface and Coatings Technology, 2021, 422: 127489

    Article  Google Scholar 

  21. Tan Y, Ma H, Xiong R, et al. Preparation and Photocatalytic Performance of Double-shelled Hollow W18O49@C3N4@Ti3C2 Microspheres[J]. Journal of Wuhan University of Technology -Materials Science Edition, 2021, 36(03): 311–317

    Article  CAS  Google Scholar 

  22. Ahmadian H, Tehrani FS, Aliannezhadi M. Hydrothermal Synthesis and Characterization of WO3 Nanostructures: Effects of Capping Agent and pH[J]. Materials Research Express, 2019, 6(10): 105 024

    Article  CAS  Google Scholar 

  23. Guo T, Yao MS, Lin YH, et al. A Comprehensive Review on Synthesis Methods for Transition-metal Oxide Nanostructures[J]. Cryst. Eng. Comm., 2015, 17(19): 3 551–3 585

    Article  CAS  Google Scholar 

  24. Gu Z, Zhai T, Gao B, et al. Controllable Assembly of WO3 Nanorods/Nanowires into Hierarchical Nanostructures[J]. The Journal of Physical Chemistry B, 2006, 110(47): 23 829–23 836

    Article  CAS  Google Scholar 

  25. Le Houx N, Pourroy G, Camerel F, et al. WO3 Nanoparticles in the 5–30 nm Range by Solvothermal Synthesis under Microwave or Resistive Heating[J]. The Journal of Physical Chemistry C, 2010, 114(1): 155–161

    Article  CAS  Google Scholar 

  26. Su XT, Xiao F, Lin JL, et al. Hydrothermal Synthesis of Uniform WO3 Submicrospheres Using Thiourea as an Assistant Agent[J]. Materials Characterization, 2010, 61(8): 831–834

    Article  CAS  Google Scholar 

  27. Wang L, Huang M, Chen Z, et al. pH-controlled Assembly of Three-dimensional Tungsten Oxide Hierarchical Nanostructures for Catalytic Oxidation of Cyclohexene to Adipic Acid[J]. Cryst. Eng. Comm., 2016, 18(44): 8 688–8 695

    Article  CAS  Google Scholar 

  28. Cruywagen JJ, Krüger L, Rohwer EA. Complexation of Tungsten(VI) with Citrate[J]. Journal of the Chemical Society, Dalton Transactions, 1991, (7): 1 727–1 731

  29. Cervilla A, Ramirez JA, Llopis E. Compounds of Tungsten(VI) with Citric Acid: A Spectrophotometric, Polarimetric and Hydrogen-1, Carbon-13 N.M.R. Study of the Formation and Interconversion Equilibria in Aqueous Solution[J]. Transition Metal Chemistry, 1986, 11(5): 186–192

    Article  CAS  Google Scholar 

  30. Sungpanich J, Thongtem T, Thongtem S. Photocatalysis of WO3 Nanoplates Synthesized by Conventional-hydrothermal and Microwave-hy-Drothermal Methods and of Commercial WO3 Nanorods[J]. Nanomaterials, 2014, 2014: Article 131

    Google Scholar 

  31. Wang X, Zhang H, Liu L, et al. Controlled Morphologies and Growth Direction of WO3 Nanostructures Hydrothermally Synthesized with Citric Acid[J]. Materials Letters, 2014, 130: 248–251

    Article  CAS  Google Scholar 

  32. Alymov MI, Rubtsov NM, Seplyarskii BS, et al. Synthesis of Tungsten Nanopowders and Modes of Their Combustion and Passivation[J]. Mendeleev Communications, 2019, 29(3): 355–357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawang Guo  (郭家旺).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the Key Program of Jiangxi Province on Development and Research(No.20203BBE53058), and the Key Program of Ganzhou City on Development and Research (No.202101125003)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Wen, X., Wu, Y. et al. Preparation of Spherical Tungsten Particles Assisted by Hydrothermal Method. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 1457–1462 (2023). https://doi.org/10.1007/s11595-023-2842-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2842-x

Key words

Navigation