Skip to main content
Log in

Effect of Hydrated Calcium Aluminate Cement on the Chloride Immobilization of Portland Cement Paste

  • Cementitious Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

To improve the efficiency and stability of chloride immobilization of portland cement paste, hydrated calcium aluminate cement (HCAC) prepared by wet grinding of CAC was added into portland cement paste as an additive. The immobilized chloride ratio (ICR) was evaluated, and the mechanism of chloride immobilization was researched by XRD, DTG, NMR, and MIP tests. The analysis results demonstrated that HCAC could improve the chloride immobilization capacity of portland cement paste. The mechanism was attributed to the following aspects: chemical binding capacity was enhanced via producing more Kuzel’s salt; physical adsorption capacity was reduced by decreasing the C-S-H gel; migration resistance was enhanced through refining the pore structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bendixen M, Best J, Hackney C, et al. Time Is Running Out for Sand[J]. Nature, 2019, 571(7763): 29–31

    Article  CAS  PubMed  Google Scholar 

  2. Zolghadr M, Zomorodian SMA, Shabani R, et al. Migration of Sand Mining Pit in Rivers: An Experimental, Numerical and Case Study[J]. Measurement, 2021, 172: 108 944

    Article  Google Scholar 

  3. Qin YB, Chen ZH, Ding BJ, et al. Impact of Sand Mining on the Carbon Sequestration and Nitrogen Removal Ability of Soil in the Riparian Area of Lijiang River, China[J]. Environmental Pollution, 2020, 261: 114 220

    Article  CAS  Google Scholar 

  4. Chen ZP, Mo LL, Song CM, et al. Investigation on Compression Properties of Seawater-Sea Sand Concrete[J]. Advances in Concrete Construction, 2021, 12(2): 93–103

    Google Scholar 

  5. Qin QL, Meng QS, Yang HM, et al. Study of the Anti-Abrasion Performance and Mechanism of Coral Reef Sand Concrete[J]. Construction and Building Materials, 2021, 291: 123 263

    Article  CAS  Google Scholar 

  6. Wang X, Shi JZ, Ding LN, et al. Durability of Coral-Reef-Sand Concrete Beams Reinforced with Basalt Fibre-Reinforced Polymer Bars in Seawater[J]. Advances in Structural Engineering, 2021, 24(6): 1 235–1 247

    Article  Google Scholar 

  7. Shi XM, Xie N, Fortune K, et al. Durability of Steel Reinforced Concrete in Chloride Environments: An Overview[J]. Construction and Building Materials, 2012, 30: 125–138

    Article  Google Scholar 

  8. Nielsen EP, Herfort D, Geiker MR. Binding of Chloride and Alkalis in Portland Cement Systems[J]. Cement and Concrete Research, 2005, 35(1): 117–123

    Article  CAS  Google Scholar 

  9. Lollini F, Gastaldi M, Bertolini L. Performance Parameters for the Durability Design of Reinforced Concrete Structures with Stainless Steel Reinforcement[J]. Structure and Infrastructure Engineering, 2018, 14(7): 833–842

    Article  Google Scholar 

  10. Pokorny P, Tej P, Kouril M. Evaluation of the Impact of Corrosion of Hot-Dip Galvanized Reinforcement on Bond Strength with Concrete - A Review[J]. Construction and Building Materials, 2017, 132: 271–289

    Article  CAS  Google Scholar 

  11. Pritzl MD, Tabatabai H, Ghorbanpoor A. Laboratory Evaluation of Select Methods of Corrosion Prevention in Reinforced Concrete Bridges[J]. International Journal of Concrete Structures and Materials, 2014, 8(3): 201–212

    Article  CAS  Google Scholar 

  12. Herrera JCO, Escadeillas G, Arliguie G. Electro-chemical Chloride Extraction: Influence of C3A of the Cement on Treatment Efficiency[J]. Cement and Concrete Research, 2006, 36(10): 1 939–1 946

    Article  Google Scholar 

  13. Jin ZQ, Hou DS, Zhao TJ. Electrochemical Chloride Extraction (ECE) based on the High Performance Conductive Cement-Based Composite Anode[J]. Construction and Building Materials, 2018, 173: 149–159

    Article  CAS  Google Scholar 

  14. Li Y, Liu XF, Wu MK, et al. Research of Electrochemical Chloride Extraction and Reinforcement of Concrete Column Using MPC-bonded Carbon Fiber Reinforced Plastic Sheet and Mesh[J]. Construction and Building Materials, 2017, 153: 436–444

    Article  CAS  Google Scholar 

  15. Morris W, Vico A, Vazquez M. The Performance of A Migrating Corrosion Inhibitor Suitable for Reinforced Concrete[J]. Journal of Applied Electrochemistry, 2003, 33(12): 1 183–1 189

    Article  CAS  Google Scholar 

  16. De Weerdt K, Colombo A, Coppola L, et al. Impact of the Associated Cation on Chloride Binding of Portland Cement Paste[J]. Cement and Concrete Research, 2015, 68: 196–202

    Article  CAS  Google Scholar 

  17. Baroghel-Bouny V, Wang X, Thiery M, et al. Prediction of Chloride Binding Isotherms of Cementitious Materials by Analytical Model or Numerical Inverse Analysis[J]. Cement and Concrete Research, 2012, 42(9): 1 207–1 224

    Article  CAS  Google Scholar 

  18. Thomas MDA, Hooton RD, Scott A, et al. The Effect of Supplementary Cementitious Materials on Chloride Binding in Hardened Cement Paste[J]. Cement and Concrete Research, 2012, 42(1): 1–7

    Article  CAS  Google Scholar 

  19. Ipavec A, Vuk T, Gabrovsek R, et al. Chloride Binding into Hydrated Blended Cements: The Influence of Limestone And Alkalinity[J]. Cement and Concrete Research, 2013, 48: 74–85

    Article  CAS  Google Scholar 

  20. Hu X, Shi CJ, Li JQ, et al. Chloride Migration in Cement Mortars with Ultra-Low Water to Binder Ratio[J]. Cement and Concrete Composites, 2021, 118: 103 974

    Article  CAS  Google Scholar 

  21. Talero R. Synergic Effect of Friedel’s Salt from Pozzolan and from OPC co-precipitating in A Chloride Solution[J]. Construction and Building Materials, 2012, 33: 164–180

    Article  Google Scholar 

  22. Mesbah A, Francois M, Cau-Dit-Coumes C, et al. Crystal structure of Kuzel’s salt 3CaO·Al2O3·1/2CaSO4·1/2CaCl2·11H2O Determined by Synchrotron Powder Diffraction[J]. Cement and Concrete Research, 2011, 41(5): 504–509

    Article  CAS  Google Scholar 

  23. Yang L, Xu JB, Huang YB, et al. Using Layered Double Hydroxides and Anion Exchange Resin to Improve the Mechanical Properties and Chloride Binding Capacity of Cement Mortars[J]. Construction and Building Materials, 2021, 272: 122 002

    Article  CAS  Google Scholar 

  24. Yoshida S, Elakneswaran Y, Nawa T. Electrostatic Properties of C-S-H and C-A-S-H for Predicting Calcium and Chloride Adsorption[J]. Cement and Concrete Composites, 2021, 121: 104 109

    Article  CAS  Google Scholar 

  25. Chang HL, Feng P, Lyu K, et al. A Novel Method for Assessing C-S-H Chloride Adsorption in Cement Pastes[J]. Construction and Building Materials, 2019, 225: 324–331

    Article  CAS  Google Scholar 

  26. Sugiyama D. Chemical Alteration of Calcium Silicate Hydrate (C-S-H) in Sodium Chloride Solution[J]. Cement and Concrete Research, 2008, 38(11): 1 270–1 275

    Article  CAS  Google Scholar 

  27. Kurdowski W. The Protective Layer and Decalcification of C-S-H in the Mechanism of Chloride Corrosion of Cement Paste[J]. Cement and Concrete Research, 2004, 34(9): 1 555–1 559

    Article  CAS  Google Scholar 

  28. Ghoddousi P, Saadabadi LA. Pore Structure Indicators of Chloride Transport in Metakaolin and Silica Fume Self-Compacting Concrete[J]. International Journal of Civil Engineering, 2018, 16(5a): 583–592

    Article  Google Scholar 

  29. Liu XH, Ma BG, Tan HB, et al. Chloride immobilization of Cement-Based Material Containing Nano-Al2O3[J]. Construction and Building Materials, 2019, 220: 43–52

    Article  CAS  Google Scholar 

  30. Ma B, Liu XH, Tan HB, et al. Utilization of Pretreated Fly Ash to Enhance the Chloride Binding Capacity of Cement-Based Material[J]. Construction and Building Materials, 2018, 175: 726–734

    Article  CAS  Google Scholar 

  31. Chen P, Ma BG, Tan HB, et al. Effects of amorphous aluminum hydroxide on Chloride Immobilization in Cement-Based Materials[J]. Construction and Building Materials, 2020, 231: 117–171

    Article  Google Scholar 

  32. Li CB, Ma BG, Tan HB, et al. Effect of Triisopropanolamine on chloride binding of Cement Paste with Ground-Granulated Blast Furnace Slag[J]. Construction and Building Materials, 2020, 256: 119–494

    Article  Google Scholar 

  33. Liu XH, Ma BG, Tan HB, et al. Preparation of Ultrafine Fly Ash by Wet Grinding and Its Utilization for Immobilizing Chloride Ions in Cement Paste[J]. Waste Management, 2020, 113: 456–468

    Article  CAS  PubMed  Google Scholar 

  34. Ma BG, Zhang T, Tan HB, et al. Effect of TIPA on Chloride Immobilization in Cement-Fly Ash Paste[J]. Advances in Materials Science and Engineering, 2018, 2018: 1–11

    Google Scholar 

  35. Franco-Lujan VA, Mendoza-Rangel JM, Jimenez-Quero VG, et al. Chloride-binding Capacity of Ternary Concretes Containing Fly Ash and Untreated Sugarcane Bagasse Ash[J]. Cement and Concrete Composites, 2021, 120: 104–040

    Article  Google Scholar 

  36. Garcia R, De La Rubia MA, Enriquez E, et al. Chloride Binding Capacity of Metakaolin and Nanosilica Supplementary Pozzolanic Cementitious Materials in Aqueous Phase[J]. Construction and Building Materials, 2021, 298: 123–903

    Article  Google Scholar 

  37. Li SC, Jin ZQ, Yu Y. Chloride Binding by Calcined Layered Double Hydroxides and Alumina-Rich Cementitious Materials in Mortar Mixed with Seawater and Sea Sand[J]. Construction and Building Materials, 2021, 293: 123493

    Article  CAS  Google Scholar 

  38. Nehring J, Neubauer J, Berger S, et al. Acceleration of OPC by CAC in Binary and Ternary Systems: The Role of Pore Solution Chemistry[J]. Cement and Concrete Research, 2018, 107: 264–274

    Article  CAS  Google Scholar 

  39. Gawlicki M, Nocun-Wczelik W, Bak L. Calorimetry in the Studies of Cement Hydration[J]. Journal of Thermal Analysis and Calorimetry, 2010, 100(2): 571–576

    Article  CAS  Google Scholar 

  40. Jin SH, Yang HJ, Hwang JP, et al. Corrosion Behaviour of Steel in CAC-mixed Concrete Containing Different Concentrations of Chloride[J]. Construction and Building Materials, 2016, 110: 227–234

    Article  CAS  Google Scholar 

  41. Gu P, Beaudoin JJ. A Conduction Calorimetric Study of Early Hydration of Ordinary Portland Cement/High Alumina Cement Pastes[J]. Journal of Materials Science, 1997, 32: 3 875–3 881

    Article  CAS  Google Scholar 

  42. Gu P, James J, Beaudoin. Early Strength Development and Hydration of Ordinary Portland Cement/Calcium Aluminate Cement Pastes[J]. Advanced Cement Based Materials, 1997, 6: 53–58

    Article  CAS  Google Scholar 

  43. Xu LL, Wang PM, De Schutter G, et al. Effect of Calcium Aluminate Cement Variety on the Hydration of Portland Cement in Blended System[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2014, 29(4): 751–756

    Article  CAS  Google Scholar 

  44. Liu K, Chen AB, Shang XJ, et al. The Impact of Mechanical Grinding on Calcium Aluminate Cement Hydration at 30 Degrees C[J]. Ceramics International, 2019, 45(11): 14 121–14 125

    Article  CAS  Google Scholar 

  45. Tan HB, Gu BQ, Guo YL, et al. Improvement in Compatibility of Polycarboxylate Superplasticizer with poor-quality aggregate containing montmorillonite by Incorporating Polymeric Ferric Sulfate[J]. Construction and Building Materials, 2018, 162: 566–575

    Article  CAS  Google Scholar 

  46. Guo YF, Ma BG, Zhi ZZ, et al. Effect of Polyacrylic Acid Emulsion on Fluidity of Cement Paste[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2017, 535: 139–148

    CAS  Google Scholar 

  47. Chen JB, Zhang GL, Mo LW, et al. Sea Sand Concrete Chloride Ion Diffusion and Combination of Curing[J]. Advanced Building Materials and Sustainable Architecture, 2012, 174–177: 358–361

    Google Scholar 

  48. Andersen MD, Jakobsen HJ, Skibsted J. Characterization of White Portland Cement Hydration and the C-S-H Structure in the Presence of Sodium Aluminate by Al-27 and Si-29 MAS NMR Spectroscopy[J]. Cement and Concrete Research, 2004, 34(5): 857–868

    Article  CAS  Google Scholar 

  49. Liu XH, Ma BG, Tan HB, et al. Improvement in Chloride Immobilization of Cement-Metakaolin System by Triisopropanolamine[J]. Applied Clay Science, 2020, 193: 105 656

    Article  CAS  Google Scholar 

  50. Wang BM, Wang WL, Liang XX, et al. Development of Cementitious Materials Utilizing Alkali-Activated Yellow River Silt[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2021, 36(3): 364–373

    Article  CAS  Google Scholar 

  51. Yang J, Su Y, He XY, et al. Pore Structure Evaluation of Cementing Composites Blended with Coal By-Products: Calcined Coal Gangue and Coal Fly Ash[J]. Fuel Processing Technology, 2018, 181: 75–90

    Article  CAS  Google Scholar 

  52. Zeng QA, Li KF, Fen-Chong T, et al. Surface Fractal Analysis of Pore Structure of High-Volume Fly-Ash Cement Pastes[J]. Applied Surface Science, 2010, 257(3): 762–768

    Article  CAS  Google Scholar 

  53. Zhang BQ, Liu W, Liu XF. Scale-dependent Nature of the Surface Fractal Dimension for Bi and Multi-Disperse Porous Solids by Mercury Porosimetry[J]. Applied Surface Science, 2006, 253(3): 1349–1355

    Article  CAS  Google Scholar 

  54. Zhang WH, Wu F, Zhang YS. Early Hydration and Setting Process of Fly Ash-Blended Cement Paste under Different Curing Temperatures[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2020, 35(3): 551–560

    Article  CAS  Google Scholar 

  55. Qoku E, Bier TA, Westphal T. Phase Assemblage in Ettringite-Forming Cement Pastes: A X-ray Diffraction and Thermal Analysis Characterization[J]. Journal of Building Engineering, 2017, 12: 37–50

    Article  Google Scholar 

  56. Grishchenko RO, Emelina AL, Makarov PY. Thermodynamic Properties and Thermal Behavior of Friedel’s Salt[J]. Thermochimica Acta, 2013, 570: 74–79

    Article  CAS  Google Scholar 

  57. Xu D S, Liu QC, Qin Y, et al. Analytical Approach For Crack Identification of Glass Fiber Reinforced Polymer-Sea Sand Concrete Composite Structures Based on Strain Dissipations[J]. Structural Health Monitoring-an International Journal, 2020, 20(5): 2 778–2 790

    Article  Google Scholar 

  58. Dweck J, Da Cunha ALC, Pinto CA, et al. Thermogravimetry on Calcined Mass Basis - Hydrated Cement Phases and Pozzolanic Activity Quantitative Analysis[J]. Journal of Thermal Analysis and Calorimetry, 2009, 97(1): 85–89

    Article  CAS  Google Scholar 

  59. Alarcon-Ruiz L, Platret G, Massieu E, et al. The Use of Thermal Analysis in Assessing the Effect of Temperature on A Cement Paste[J]. Cement and Concrete Research, 2005, 35(3): 609–613

    Article  CAS  Google Scholar 

  60. Gupta R, Tomar AS, Mishra D, et al. Multinuclear MAS NMR Characterization of Fly-Ash-Based Advanced Sodium Aluminosilicate Geopolymer: Exploring Solid-State Reactions[J]. Chemistryselect, 2020, 5(16): 4 920–4 927

    Article  CAS  Google Scholar 

  61. Guo XL, Meng FJ, Shi HS. Microstructure and Characterization of Hydrothermal Synthesis of Al-Substituted Tobermorite[J]. Construction and Building Materials, 2017, 133: 253–260

    Article  CAS  Google Scholar 

  62. Yang CC. On the Relationship between Pore Structure and Chloride Diffusivity from Accelerated Chloride Migration Test in Cement-Based Materials[J]. Cement and Concrete Research, 2006, 36(7): 1 304–1 311

    Article  CAS  Google Scholar 

  63. Fu CQ, Ling YF, Ye HL, et al. Chloride Resistance and Binding Capacity of Cementitious Materials Containing High Volumes of Fly Ash and Slag[J]. Magazine of Concrete Research, 2021, 73(2): 55–68

    Article  Google Scholar 

  64. Appelo CAJ. The Anion Exchange Properties of AFm (hydrocalumite-group) minerals Defined from Solubility Experiments and Crystallographic Information[J]. Cement and Concrete Research, 2021, 140: 106–270

    Article  Google Scholar 

  65. Chen PA, Ma BG, Tan HB, et al. Utilization of Barium Slag to Improve Chloride-Binding Ability of Cement-Based Material[J]. Journal of Cleaner Production, 2021, 283: 124–612

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Tan  (谭洪波).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the National Natural Science Foundation of China (Nos.52278275 and 52202029) and the Major Technical Innovation Project in Hubei Province of China(No.2021BAA060)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, Z., Tan, H., Liu, X. et al. Effect of Hydrated Calcium Aluminate Cement on the Chloride Immobilization of Portland Cement Paste. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 1360–1371 (2023). https://doi.org/10.1007/s11595-023-2830-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2830-1

Key words

Navigation