Skip to main content
Log in

Improvement of AlN Thermal Conductivity Based on Reductive Compound Additives

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

AlN ceramics were prepared by plasma activation sintering (PAS) with compound additives yttrium acetylacetonate (Y(acac)3) and melamine (C3H6N6). The effects of compound additives on the microstructure, density, and thermal properties of AlN ceramic were studied. Y(acac)3 and C3H6N6 can form Y2O3, residual organic carbon and reducing gas during the heating process, which improves the AlN sintering performance at a temperature of 1 700 °C and the bulk thermal conductivity. When the content of Y(acac)3 is 10 wt% and C3H6N6 is 3 wt%, the thermal conductivity of AlN ceramics is 105.6 W/(m·K), which is much higher than that of AlN ceramics with Y2O3 under the same sintering conditions. This work provides theoretical reference for the preparation of high-performance AlN ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhou Y. Material Foundation for Future 5G Technology[J]. Accounts of Materials Research, 2021, 2(5): 306–310

    Article  CAS  Google Scholar 

  2. Hill M D, Cruickshank D B, MacFarlane I A. Perspective on Ceramic Materials for 5G Wireless Communication Systems[J]. Applied Physics Letters, 2021, 118(12): 120 501

    Article  CAS  Google Scholar 

  3. Chung D D L. Materials for Thermal Conduction[J]. Applied Thermal Engineering, 2001, 21(16): 1593–1605

    Article  CAS  Google Scholar 

  4. Frear D. Packaging Materials[M]. Cham: Springer International Publishing, 2017

    Book  Google Scholar 

  5. Ding W, Xu J, Chen Z, et al. Effects of Heating Temperature on Interfacial Microstructure and Compressive Strength of Brazed CBN-AlN Composite Abrasive Grits[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2010, 25(6): 952–956

    Article  CAS  Google Scholar 

  6. Gabe E, Le Page Y, Mair S L. X-Ray-Diffraction Determination of Valence-Electron Density in Aluminum Nitride[J]. Physical Review B, 1981, 24(10): 5634–5641

    Article  CAS  Google Scholar 

  7. Zhao H, Wang W, Wang H, et al. Spark Plasma Sintered AlN-BN Composites and Its Thermal Conductivity[J]. J Journal of Wuhan University of Technology-Mater. Sci. Ed., 2008, 23(6): 866–869

    Article  CAS  Google Scholar 

  8. Komeya K, Inoue H, Tsuge A. Effect of Various Additives on Sintering of Aluminum Nitride[J]. Journal of the Ceramic Association, Japan, 1981, 89(1 030): 330–336

    Article  CAS  Google Scholar 

  9. Watari K, Valecillos M C, Brito M E, et al. Densification and Thermal Conductivity of AIN Doped with Y2O3, CaO, and Li2O[J]. Journal of the American Ceramic Society, 1996, 79(12): 3103–3108

    Article  CAS  Google Scholar 

  10. Watari K, Hwang H J, Toriyama M, et al. Effective Sintering Aids for Low-temperature Sintering of AlN Ceramics[J]. Journal of Materials Research, 1999, 14(4): 1409–1417

    Article  CAS  Google Scholar 

  11. Watari K. High Thermal Conductivity Non-Oxide Ceramics[J]. Journal of the Ceramic Society of Japan, 2001, 109(1 265): 7–16

    Article  Google Scholar 

  12. Baek S-H, Jeong H, Ryu S-S. AlN with High Strength and High Thermal Conductivity Based on An MCAS-Y2O3-YSZ Multi-Additive System[J]. Journal of the European Ceramic Society, 2022, 42(3): 898–904

    Article  CAS  Google Scholar 

  13. Yamakawa T, Tatami J, Komeya K, et al. Synthesis of AlN Powder from Al(OH)3 by Reduction-Nitridation in A Mixture of NH3–C3H8 Gas[J]. Journal of the European Ceramic Society, 2006, 26(12): 2413–2418

    Article  CAS  Google Scholar 

  14. Huang Z H, Qi L H, Pan W, et al. Synthesis of Aluminum Nitride by Nitridation of γ-Al2O3 Nanoparticles in Flowing Ammonia[J]. Key Engineering Materials, 2008, 368: 1 118

    Google Scholar 

  15. Zhang Q, Gao L. Synthesis of Nanocrystalline Aluminum Nitride by Nitridation of delta-Al2O3 Nanoparticles in Flowing Ammonia[J]. Journal of the American Ceramic Society, 2006, 89(2): 415–421

    Article  CAS  Google Scholar 

  16. Wang D, Wang C, Li M, et al. Effect of NH4F Additive on Purification of AlN Ceramics[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(9): 6731–6736

    CAS  Google Scholar 

  17. Lu H, Qin M, Wu H, et al. Effect of AlN Powders on the Debinding and Sintering Behavior, and Thermal Conductivity of Injection Molded AlN Ceramics[J]. Ceramics International, 2019, 45(18): 23890–23894

    Article  CAS  Google Scholar 

  18. Modarresifar F, Bingham P A, Jubb G A. Thermal Conductivity of Refractory Glass Fibres: A Study of Materials, Standards and Test Methods[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(1): 35–44

    Article  CAS  Google Scholar 

  19. Komeya K, Tsuge A, Inoue H, et al. Effect of CaCO3 Addition on the Sintering of AlN[J]. Journal of Materials Science Letters, 1982, 1(8): 325–326

    Article  CAS  Google Scholar 

  20. Qiu J-Y, Hotta Y, Watari K, et al. Low-Temperature Sintering Behavior of the Nano-sized AlN Powder Achieved by Super-fine Grinding Mill with Y2O3 and CaO Additives[J]. Journal of the European Ceramic Society, 2006, 26(4–5): 385–390

    Article  CAS  Google Scholar 

  21. Barash E H, Coan P S, Lobkovsky E B, et al. Anhydrous Yttrium Acetylacetonate and the Course of Thermal Dehydration of Y(acac)3.3H2O[J]. Inorganic Chemistry, 1993, 32(5): 497–501

    Article  CAS  Google Scholar 

  22. Liu L, Kawaharamura T, Sakamoto M, et al. The Quality Improvement of Yttrium Oxide Thin Films Grown at Low Temperature via the Third-Generation Mist Chemical Vapor Deposition Using Oxygen-Supporting Sources[J]. Physica Status Solidi (b), 2021, 258(10): 2 100 105

    Article  Google Scholar 

  23. Rauchenecker J, Schwarz S, Artner W, et al. Atmosphere Control and Secondary Phase Migration during Moderate-Temperature Sintering of Aluminum Nitride[J]. Ceramics International, 2022, 48(11): 16425–16431

    Article  CAS  Google Scholar 

  24. Barin I. Thermochemical Data of Pure Substances[M]. New Jersey: Wiley, 1995

    Book  Google Scholar 

  25. Tan X, Zhao Z, Chen P, et al. Effect of Nano Metallic Fe on Al5O6N Synthesis in Al2O3-C Refractories[J]. Interceram - International Ceramic Review, 2015, 64(3): 108–111

    Article  Google Scholar 

  26. Watari K, Kawamoto M, Ishizaki K. Sintering Chemical Reactions to Increase Thermal Conductivity of Aluminium Nitride[J]. Journal of Materials Science, 1991, 26(17): 4727–4732

    Article  CAS  Google Scholar 

  27. Molisani A L, Goldenstein H, Yoshimura H N. Second-Phase Evolution and Densification Behavior of AlN with CaO-Y2O3–C Multicomponent Additive System[J]. Ceramics International, 2022, 48(5): 6615–6626

    Article  CAS  Google Scholar 

  28. Nakano H, Watari K, Urabe K. Grain Boundary Phase in AlN Ceramics Fired under Reducing N2 Atmosphere with Carbon[J]. Journal of the European Ceramic Society, 2003, 23(10): 1761–1768

    Article  CAS  Google Scholar 

  29. Kasori M, Ueno F. Thermal Conductivity Improvement of YAG Added AlN Ceramics in the Grain Boundary Elimination Process[J]. Journal of the European Ceramic Society, 1995, 15(5): 435–443

    Article  CAS  Google Scholar 

  30. He X, Shi L, Guo Y, et al. Study on Microstructure and Dielectric Properties of Aluminum Nitride Ceramics[J]. Materials Characterization, 2015, 106: 404–410

    Article  CAS  Google Scholar 

  31. Kobayashi R, Moriya Y, Imamura M, et al. Relation between Oxygen Concentration in AlN Lattice and Thermal Conductivity of AlN Ceramics Sintered with Various Sintering Additives[J]. Journal of the Ceramic Society of Japan, 2011, 119(1 388): 291–294

    Article  CAS  Google Scholar 

  32. Jiang H, Wang X-H, Lei W, et al. Effects of Two-Step Sintering on Thermal and Mechanical Properties of Aluminum Nitride Ceramics by Impedance Spectroscopy Analysis[J]. Journal of the European Ceramic Society, 2019, 39(2–3): 249–254

    Article  CAS  Google Scholar 

  33. Jiang H, Wang X-H, Fan G-F, et al. Effect of Hot-Pressing Sintering on Thermal and Electrical Properties of AlN Ceramics with Impedance Spectroscopy and Dielectric Relaxations Analysis[J]. Journal of the European Ceramic Society, 2019, 39(16): 5174–5180

    Article  CAS  Google Scholar 

  34. Virkar A V, Jackson T B, Cutler R A. Thermodynamic and Kinetic Effects of Oxygen Removal on the Thermal Conductivity of Aluminum Nitride[J]. Journal of the American Ceramic Society, 1989, 72(11): 2031–2042

    Article  CAS  Google Scholar 

  35. Lin K, Nie G, Sheng P, et al. Effects of Doping Al-Metal Powder on Thermal, Mechanical and Dielectric Properties of AlN Ceramics[J]. Ceramics International, 2022, 48(24): 36210–36217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meijuan Li  (李美娟).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by National Natural Science Foundation of China(Nos.51872217, 51972246) and the Guangdong Major Project of Basic and Applied Basic Research(Nos.2021B0301030001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, C., Wang, G. et al. Improvement of AlN Thermal Conductivity Based on Reductive Compound Additives. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 1025–1033 (2023). https://doi.org/10.1007/s11595-023-2791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2791-4

Key words

Navigation