Skip to main content
Log in

Effect of Conventional and Pulsed TIG Welding on Microstructural and Mechanical Characteristics of AA 6082-T6 Repair Welds

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Repair welding of AA 6082-T6 joints was carried out using ER 4043 filler through the TIG welding process with or without pulsed current. Microstructure and mechanical characteristics of the joints before and after repairing were investigated by examining macrostructure, microstructure, and distributions of porosity in the weld metal (WM), and by hardness, tensile, and bending tests. We observed that the welding current, phase transformations in heat-affected zone (HAZ) and porosity introduced in the WM during welding influence on its mechanical properties in sequence. The experimental results showed that the bead width and penetration as well as size of pores in the joints were mainly influenced by the welding currents. The sound joints were obtained at a welding current of 140 A with or without pulsed current when welding speed and gas flow rate were set at 20 cm·min−1 and 15 L·min−1, respectively. Among them, the decrease in mechanical properties of repair weld (RW) was directly related to the phase transformations in the over-ageing zone due to the double welding thermal cycles and elevated distribution of porosity in the WM. In addition, it was observed that the comparatively smaller grain size and lower porosity in WM of the RW produced by pulsed TIG welding gave a positive effect on its mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Troeger LP, Starke EA. Microstructural and Mechanical Characterization of a Superplastic 6xxx Aluminum Alloy[J]. Mater. Sci. Eng. A, 2000, 277(1): 102–113

    Article  Google Scholar 

  2. Mathers G. The Welding of Aluminium and Its Alloys[M]. 1st edn. Woodhead Publishing, Abington Hall, Abington Cambridge CB1 6AH, England, 2002: 236

    Book  Google Scholar 

  3. Sakai Y. The Current State and Future of Aluminum Alloy Applications for Railway Rolling Stock[J]. Keikinzoku/Journal Jpn. Inst. Light Met., 2007, 65: 14–17

    CAS  Google Scholar 

  4. Kaufman JG. Introduction to Aluminum Alloys and Tempers[M]. 1st edn. ASM International, Materials Park, Ohio, USA, 2000: 242

    Google Scholar 

  5. Totten GE, MacKenzie DS. Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes[M]. 1st edn. CRC Press, New York, 2003;1310

    Google Scholar 

  6. Leoni F, Sandness L, Grong Ø, et al. Mechanical Behavior of Gas Metal Arc AA6082-T6 Weldments[J]. Procedia Struct. Integr., 2019, 18: 449–456

    Article  Google Scholar 

  7. Huang L, Hua X, Wu D, et al. Microstructural Characterization of 5083 Aluminum Alloy Thick Plates Welded with GMAW and Twin Wire GMAW Processes[J]. Int. J. Adv. Manuf. Technol., 2017, 93(5): 1 809–1 817

    Article  Google Scholar 

  8. Ambriz RR, Jaramillo D. Mechanical Behavior of Precipitation Hardened Aluminum Alloys Welds[M]. In: Waldemar AM (ed) Light Met Alloys Appl. IntechOpen, London, United Kingdom, 2014: 35–59

    Google Scholar 

  9. Imam FER, Che JMS, Samad Z, et al. Microstructure Analysis and Mechanical Characteristics of Tungsten Inert Gas and Metal Inert Gas Welded AA6082-T6 Tubular Joint: A Comparative Study[J]. Trans. Nonferrous Met. Soc. China, 2017, 27(1): 17–24

    Article  Google Scholar 

  10. Praveen P, Yarlagadda PKDV. Meeting Challenges in Welding of Aluminum Alloys through Pulse Gas Metal Arc Welding[J]. J. Mater. Process. Technol., 2005, 164–165: 1 106–1 112

    Article  Google Scholar 

  11. Kumar P, Arif A, Prasad ACVS, et al. Study of Welding Process Parameter in TIG Joining of Aluminum Alloy (6061)[J]. Materials Today: Proceedings, 2021, 47(13): 4 020–4 025

    CAS  Google Scholar 

  12. Indira RM, Marpu RN. Effect of Pulsed Current Tig Welding Parameters on Mechanical Properties of J-Joint Strength of Aa6351[J]. Int. J. of Eng. Sci. (IJES), 2012, 1(1): 1–5

    Google Scholar 

  13. Wang L, Suo Y, Wu C, et al. Effect of Pulse Frequency on Microstructure and Mechanical Properties of 2198 Al-Li Alloy Joints Obtained by Ultrahigh-Frequency Pulse AC CMT Welding[J]. Materials, 2019, 12(1): 79

    Article  CAS  Google Scholar 

  14. Kumar R, Dilthey U, Dwivedi DK, et al. Thin Sheet Welding of Al 6082 Alloy by AC Pulse-GMA and AC Wave Pulse-GMA Welding[J]. Mater. Des., 2009, 30(2): 306–313

    Article  CAS  Google Scholar 

  15. Praveen P, Yarlagadda PKDV, Kang MJ. Advancements in Pulse Gas Metal Arc Welding[J]. J. Mater. Process. Technol., 2005, 164–165: 1 113–1 119

    Article  Google Scholar 

  16. Rajendran C, Srinivasan K, Balasubramanian V, et al. Mechanical Properties and Microstructural Characteristics of Friction Stir Welded AA2014-T6 Aluminium Alloy Joints[J]. J. Mech. Behav. Mater., 2019, 28(1): 169–185

    Article  Google Scholar 

  17. Al-Fadhalah K, Almazrouee A, Aloraier DrA. Microstructure and Mechanical Properties of Multi-pass Friction Stir Processed Aluminum Alloy 6063[J]. Mater. Des., 2014, 53: 550–560

    Article  CAS  Google Scholar 

  18. Liu H, Zhang H. Repair Welding Process of Friction Stir Welding Groove Defect[J]. Trans. Nonferrous Met. Soc. China, 2009, 19(3): 563–567

    Article  CAS  Google Scholar 

  19. Katsas S, Nikolaou J, Papadimitriou G. Microstructural Changes Accompanying Repair Welding in 5xxx Aluminium Alloys and their Effect on the Mechanical Properties[J]. Mater. Des., 2006, 27(10): 968–975

    Article  CAS  Google Scholar 

  20. Shankar K, Wu W. Effect of Welding and Weld Repair on Crack Propagation Behaviour in Aluminium Alloy 5083 Plates[J]. Mater. Des., 2002, 23(2): 201–208

    Article  CAS  Google Scholar 

  21. Yao JG, He DQ, Lai RL, et al. Mechanical Properties of Repairing Welding Joints of 6005A-T6 Aluminum Alloy Prepared by FSW and MIG Processes[J]. Zhongguo Youse Jinshu Xuebao/Chinese J. Nonferrous Met. 2015, 25(3): 589–594

    CAS  Google Scholar 

  22. Rayes Mel, El-Danaf E. The Influence of Multi-pass Friction Stir Processing on the Microstructural and Mechanical Properties of Aluminum Alloy 6082[J]. J. Mater. Process. Technol., 2012, 212(5): 1 157–1 168

    Article  Google Scholar 

  23. Baskutis S, Baskutiene J, Bendikiene R, et al. Effect of Weld Parameters on Mechanical Properties and Tensile Behavior of Tungsten Inert Gas Welded AW6082-T6 Aluminium Alloy[J]. J. Mech. Sci. Technol., 2019, 33(2): 765–772

    Article  Google Scholar 

  24. Wan Z, Meng D, Zhao Y, et al. Improvement on the Tensile Properties of 2219-T8 Aluminum Alloy TIG Welding Joint with Weld Geometry Optimization[J]. J. Manuf. Process., 2021, 67: 275–285

    Article  Google Scholar 

  25. Samiuddin M, Li J, Taimoor M, et al. Investigation on the Process Parameters of TIG-Welded Aluminum Alloy through Mechanical and Microstructural Characterization[J]. Def. Technol., 2021, 17(4): 1 234–1 248

    Article  Google Scholar 

  26. Senthil KT, Balasubramanian V, Sanavullah MY. Influences of Pulsed Current Tungsten Inert Gas Welding Parameters on the Tensile Properties of AA 6061 Aluminium Alloy[J]. Mater. Des., 2007, 28(7): 2 080–2 092

    Article  Google Scholar 

  27. Kumar A, Sundarrajan S. Optimization of Pulsed TIG Welding Process Parameters on Mechanical Properties of AA 5456 Aluminum Alloy Weldments[J]. Mater. Des., 2009, 30(4): 1 288–1 297

    Article  CAS  Google Scholar 

  28. Kumar A, Sundarrajan S. Effect of Welding Parameters on Mechanical Properties and Optimization of Pulsed TIG Welding of Al-Mg-Si Alloy[J]. Int. J Adv. Manuf. Technol., 2009, 42(1): 118–125

    Article  Google Scholar 

  29. ASTM E112-10. Standard Test Methods for Determining Average Grain Size[S].

  30. AWS D1.2/D1.2M. Structural Welding Code-Aluminum[S]

  31. Yusof F, Jamaluddin MF. 6.07-Welding Defects and Implications on Welded Assemblies[M]. In: Hashmi S, Batalha GF, Tyne VCJ, Yilbas B (eds) Comprehensive Materials Processing. Elsevier, Oxford, 2014, 6: 125–134

    Chapter  Google Scholar 

  32. Kah P, Olabode M, Hiltunen E, et al. Welding of a 7025 Al-alloy by a pulsed MIG Welding Process[J]. Mechanics, 2013, 19(1): 1

    Article  Google Scholar 

  33. Menzemer C, Lam PC, Srivatsan TS, et al. An Investigation of Fusion Zone Microstructures of Welded Aluminum Alloy Joints[J]. Mater. Lett., 1999, 41(4): 192–197

    Article  CAS  Google Scholar 

  34. Huang Y, Zhang Z, LV N, Chen SB, et al. On the Mechanism and Detection of Porosity during Pulsed TIG Welding of Aluminum Alloys[M]. In: Tarn TJ, Chen SB, Chen XQ (eds) Robotic Welding, Intelligence and Automation. Springer, Cham, China, 2015, 363: 133–143

    Chapter  Google Scholar 

  35. Manti R, Dwivedi DK. Microstructure of Al-Mg-Si Weld Joints Produced by Pulse TIG Welding[J]. Mater. Manuf. Process., 2007, 22(1): 57–61

    Article  CAS  Google Scholar 

  36. Yang M, Qi B, Cong B, et al. Effect of Pulse Frequency on Microstructure and Properties of Ti-6Al-4V by Ultrahigh-frequency Pulse Gas Tungsten Arc Welding[J]. Int. J. Adv. Manuf. Technol., 2013, 68(1): 19–31

    Article  Google Scholar 

  37. Naumov A, Morozova I, Rylkov E, et al. Metallurgical and Mechanical Characterization of High-Speed Friction Stir Welded AA 6082-T6 Aluminum Alloy[J]. Materials, 2019, 12(24): 4 211

    Article  CAS  Google Scholar 

  38. Fadaeifard F, Matori KA, Garavi F, et al. Effect of Post Weld Heat Treatment on Microstructure and Mechanical Properties of Gas Tungsten Arc Welded AA6061-T6 Alloy[J]. Trans. Nonferrous Met. Soc. China, 2016, 26(12): 3 102–3 114

    Article  CAS  Google Scholar 

  39. Missori S, Pezzuti E. Microstructural and Mechanical Characteristics of Welded Joints in Type 6082-T6 Aluminium Alloy[J]. Weld. Int., 1997, 11(6): 468–474

    Article  Google Scholar 

  40. Baskutis S, Žunda A, Kreivaitis R. Mechanical Properties and Microstructure of Aluminium Alloy AW6082-T6 Joints Welded by Double-sided MIG Process before and after Aging[J]. Mechanika, 2019, 25(2): 107–113

    Article  Google Scholar 

  41. Moreira PMGP, Santos T, Tavares SMO, et al. Mechanical and Metallurgical Characterization of Friction Stir Welding Joints of AA6061-T6 with AA6082-T6[J]. Mater. Des., 2009, 30(1): 180–187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prapas Muangjunburee.

Additional information

Conflict of interest

All authors declare that there are no competing interests.

Funded by the Center of Excellence in Metals and Materials Engineering (CEMME), Faculty of Engineering, Prince of Songkla University and Supported by the National Science, Research and Innovation Fund (NSRF) and Prince of Songkla University (No. ENG6505079S)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naing, T.H., Muangjunburee, P. Effect of Conventional and Pulsed TIG Welding on Microstructural and Mechanical Characteristics of AA 6082-T6 Repair Welds. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 865–876 (2023). https://doi.org/10.1007/s11595-023-2770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2770-9

Key words

Navigation