Skip to main content
Log in

Application of Silica Aerogel Carrier via Supercritical Drying for Fragrance Controlled-release

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Silica aerogel with different hydrophilicities were prepared from tetramethoxysilane, Methymethoxysilane, tetramethoxysilane-propyltrimethoxysilane, or tetramethoxysilane-phenyltrimethoxysilane mixtures via supercritical drying process (labelled as TMOS-AG Me-TMOS-AG, Pr-TMOS-AG, or Ph-TMOS-AG, respectively). Three fragrances, including geraniol, ethyl vanillin, and menthol, were loaded to TMOS-AG. The thermal analysis confirmed all loading fragrances are stable until over 200 °C. And among all fragrances, geraniol presented the maximum loading contents (Lm). Concentration dependences indicated the geraniol was mono layer absorbed. Py-GC/MS of geraniol in TMOS-AG under both N2 and mimic air atmosphere (90% N2 and 10% O2) confirmed that loaded geraniol could be thermally controlled-released beginning at 200 °C. As N2 absorption confirmed, even absorption/desorption equilibrium constant (k) was determined mainly by hydrophilicity of silica aerogels, and the maximum loading contents (Lm) were influenced more by the pore size. Due to mono layered absorption, bigger pores usually give less specific areas and less absorbing sites for geraniol, and then present lower Lm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Karim FT, Sarker ZM, Ghafoor K, et al. Microencapsulation of Fish Oil Using Hydroxypropyl Methylcellulose As a Carrier Material by Spray Drying[J]. Journal of Food Processing and Preservation, 2016, 40(2): 140–153

    Article  CAS  Google Scholar 

  2. Saifullah Md, Mohammad RIS, Rayhana F, et al. Micro and Nano Encapsulation, Retention and Controlled Release of Flavor and Aroma Compounds: A Critical Review[J]. Trends in Food Science & Technology, 2019, 86: 230–251

    Article  CAS  Google Scholar 

  3. Liu Y, Liu K, Zhao M, et al. A pH-responsive Fragrance Release System Based on Pseudopeptide Polymeric Micelles[J]. Reactive and Functional Polymers, 2018, 132: 138–144

    Article  CAS  Google Scholar 

  4. Ciriminna R, Pagliaro M, Sol-gel Microencapsulation of Odorants and Flavors: Opening the Route to Sustainable Fragrances and Aromas[J]. Chemical Society Reviewers, 2013, 42(24): 9 243–9 250

    Article  CAS  Google Scholar 

  5. Herrmann A. The Chemistry and Biology of Volatiles[M]. John Wiley & Sons: Chichester, UK, 2010

    Book  Google Scholar 

  6. Adriana V, Adriań C, Rauĺ P, et al. Urea-Based Low-Molecular-Weight Pseudopeptidic Organogelators for the Encapsulation and Slow Release of (R)-Limonene[J]. Journal of Agriculture food Chemistry, 2020, 68: 7051–7061

    Article  Google Scholar 

  7. Xiao Z, Hou W, Kang Y, et al. Encapsulation and Sustained Release Properties of Watermelon Flavor and Its Characteristic Aroma Compounds from γ-cyclodextrin Inclusion Complexes[J]. Food Hydrocolloids, 2019, 97: 105 202

    Article  CAS  Google Scholar 

  8. Wang J, Ding H, Tao X, et al. Storage and Sustained Release of Volatile Substances from a Hollow Silica Matrix[J]. Nanotechnology, 2007, 18(24): 245 705

    Article  Google Scholar 

  9. Li H, Teppen BJ, Johnston CT, et al. Thermodynamics of Nitroaromatic Compound Adsorption from Water by Smectite Clay[J]. Environmental Science & Technology, 2004, 38(20): 5 433–5 442

    Article  CAS  Google Scholar 

  10. Rodríguez-Bustamante G, Maldonado-Robledo A, Sánchez C, et al. Novel Method for Aroma Recovery from the Bioconversion of Lutein to β-ionone by Trichosporon Asahii Using a Mesoporous Silicate Material[J]. Applied Microbiology and Biotechnology, 2006, 71(4): 568–573

    Article  Google Scholar 

  11. Akhter F, Soomro SA, Inglezakis VJ. Silica Aerogels; A Review of Synthesis, Applications and Fabrication of Hybrid Composites[J]. Journal Porous Materials., 2021, 28: 1 387–1 400

    Article  CAS  Google Scholar 

  12. Sachithanadam M, Joshi SC. Silica Aerogel Composites[M]. ISSN1868-1212, Springer Science+Business Media Singapore Pte Ltd., 2016

  13. Hrubesh LW, Aerogel Applications[J]. Journal of Non-Crystalline Solids, 1998, 225: 335–342

    Article  CAS  Google Scholar 

  14. Rafael BT, João PV, Alyne LM, et al. Effect of Different Silylation Agents on the Properties of Ambient Pressure Dried and Supercritically Dried Vinyl-modified Silica Aerogels[J]. Journal of Supercritical Fluids, 2019, 147: 81–89

    Article  Google Scholar 

  15. Kistler S. Coherent Expanded Aerogels and Jellies[J]. Nature, 1931, 127: 741–745

    Article  CAS  Google Scholar 

  16. Mangesh V K, Sandeep BS, Ashok VH, et al. Surface Modified Sodium Silicate Based Super Hydrophobic Silica Aerogels Prepared Via Ambient Pressure Drying Process[J]. Journal of Non-Crystalline Solids, 2019, 511: 140–146

    Article  Google Scholar 

  17. García-Gonzáleza CA, Camino-Reya MC, Alnaief MC, et al. Supercritical Drying of Aerogels Using CO2: Effect of Extraction Time on the End Material Textural Properties[J]. Journal of Supercritical Fluids, 2012, 66: 297–306

    Article  Google Scholar 

  18. Param H, Tewari Arlon, Hunt JK, Lofftus D. Ambient-temperature Supercritical Drying of Transparent Silica Aerogels[J]. Materials Letters, 1985, 3(9–10): 363–367

    Google Scholar 

  19. Selay SÇ, Fatos K, Ilay G. Lightweight and Highly Hydrophobic Silica Aerogels Dried in Ambient Pressure for an Efficient Oil/Organic Solvent Adsorption[J]. Journal of Hazardous Materials, 2021, 408: 124 858

    Article  Google Scholar 

  20. Zhang X, Chen Z, Zhang JX, et al. Hydrophobic Silica Aerogels Prepared by Microwave Irradiation[J]. Chemical Physics Letters, 2021, 762: 138 127

    Article  CAS  Google Scholar 

  21. Kocon L, Despetis F, Phalippou J. Ultralow Density Silica Aerogels by Alcohol Supercritical Drying[J]. Journal of Non-Crystalline Solids, 1998, 225: 96–100

    Article  CAS  Google Scholar 

  22. Zhang J, Kong Y, Jiang X, et al. Synthesis of Hydrophobic Silica Aerogel and Its Composite Using Functional Precursor[J]. Journal Porous Materials, 2020, 27: 295–301

    Article  CAS  Google Scholar 

  23. Babaoglu HC, Bayrak A, Ozdemir N, et al. Encapsulation of Clove Essential Oil in Hydroxypropyl Beta-cyclodextrin for Characterization, Controlled Release, and Antioxidant Activity[J]. Journal of Food Processing and Preservation, 2017, 41: e13202

    Article  Google Scholar 

  24. Sing KS, Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity[J]. Pure and Applied Chemistry, 1985, 57(4): 603–619

    Article  CAS  Google Scholar 

  25. Horvath G, Kawazoe K. Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon[J]. Journal of Chemical Engineering (Jpn.), 1983, 16: 470–475

    Article  CAS  Google Scholar 

  26. Babu SKG, Irina S, Mark AM. Adsorption and Thermal Release of Highly Volatile Compounds in Silica Aerogels[J]. Journal of Supercritical Fluids, 2009, 48: 85–92

    Article  Google Scholar 

  27. Gao R, Yang W, Xu J, et al. Host-Guest Inclusion Complexes of Geraniol and Nerol with Acyclic Cucurbiturils: Preparation, Characterization and Controlled Release[J]. Chemistry Selected, 2021, 6: 1 357–1 365

    CAS  Google Scholar 

  28. Hong S, Yoon M, Hwang H, Fabrication of Spherical Silica Aerogel Granules from Water Glass by Ambient Pressure Drying[J]. Journal of American Ceramic Society, 2011, 94(10): 3 198–3 201

    Article  CAS  Google Scholar 

  29. Di H, Wang L, Zhang Y, et al. Improved Processibility of Silicone Composites by MQ Silicone Resins[J]. Journal of Applied Polymer Science, 2018, DOI: 10.1002/APP.46445

  30. Xie Y, Wang L, Zhang Y, et al. An in Situ Silicone-silicone Interpenetrating Polymer Network (IPN) with Higher Mechanical Property, Higher Hydrophilicity, and Lower Protein Adsorption[J]. Journal of Materials Science, 2018, 53: 9 325–9 339

    Article  CAS  Google Scholar 

  31. Pan Z, Zeng K, Huang B, et al. A New Dealcoholization Method in the Synthesis of Vinyl Methyl Phenyl Silicone Resins for LED Encapsulation[J]. Silicon, 2020, 12: 3 005–3 013

    Article  CAS  Google Scholar 

  32. Marco B, Tomasz T, Davide F, et al. Palladium-catalyzed Oxidation of Geraniol in Dense Carbon Dioxide[J]. Applied Catalysis A: General, 2006, 299: 66–72

    Article  Google Scholar 

  33. Smirnova I, Mamic J, Arlt W. Adsorption of Drugs on Silica Aerogels[J]. Langmuir, 2003, 19(20): 8 521–8 525

    Article  CAS  Google Scholar 

  34. Smirnova I, Suttiruengwong S, Arlt W. Aerogels: Tailor Made Carriers for Immediate and Prolonged Drug Release[J]. KONA, 2005, 23: 86–96

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenghao Luo  (罗诚浩) or Ronghua Huang  (黄荣华).

Additional information

Conflict of interest

All authors declare that there are no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Zhang, J., Pang, D. et al. Application of Silica Aerogel Carrier via Supercritical Drying for Fragrance Controlled-release. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 807–814 (2023). https://doi.org/10.1007/s11595-023-2763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2763-8

Key words

Navigation