Skip to main content
Log in

Segregation of Si and Mg at Fe(110)/Al(110) Interface

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The interface structure and electronic properties of Fe(110)/Al(110) are investigated by the first-principles plane-wave pseudopotential method. The interface segregation position of Si and Mg is determined, and the effect of Mg and Si on the interface binding of Fe(110)/Al(110) is analyzed by combining the work of separation and charge density. The results show that the Fe(110)/Al(110) interface energy of Fe-Hollow coordination is smaller and the interface structure is more stable. The Fe(110)/Al(110) interface separation surface in the form of Fe-Hollow coordination appears at the sub interface layer on the side of Al (110) near the interface. The interface structure of Mg and Si segregation is similar to that of undoped alloy elements. The calculations also suggest that Mg and Si segregate on the Al (110) side of the interface and occupy the Al lattice on the Al (110) side. The segregation of Mg and Si elements will reduce the interface binding, primarily because the Fe-Si bond and Fe-Mg bond are weaker than Fe-Al bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jawad DH, Hosseinzadeh A, Yapici GG. Effect of Layer Architecture on the Mechanical Behavior of Accumulative Roll Bonded Interstitial Free Steel/Aluminum Composites[J]. Mater. Sci. Eng. A-Struct., 2021, 818(1–2): 141 387

    Article  CAS  Google Scholar 

  2. Gecu R, Yurekturk Y, Tekoglu E, et al. Improving Wear Resistance of 304 Stainless Steel Reinforced AA7075 Aluminum Matrix Composite by Micro-Arc Oxidation[J]. Surf. Coat. Tech., 2019, 368:15–24

    Article  CAS  Google Scholar 

  3. Wang CY, Liu XH, Jiang YB, et al. Effects of Annealing and Cold Roll-Bonded Interface on the Microstructure and Mechanical Properties of the Embedded Aluminum-Steel Composite Sheet-Science Direct[J]. Sci. Bull., 2018, 63(21): 1 448–1 456

    Article  CAS  Google Scholar 

  4. Kishore K, Chhangani S, Prasad M, et al. Microstructure Evolution and Hardness of Hot Dip Aluminized Coating on Pure Iron and EUROFER 97 Steel: Effect of Substrate Chemistry and Heat Treatment[J]. Surf. Coat. Tech., 2021, 409: 126–783

    Article  Google Scholar 

  5. Lemmens B, Springer H, Graeve ID, et al. Effect of Silicon on the Microstructure and Growth Kinetics of Intermetallic Phases Formed During Hot-Dip Aluminizing of Ferritic Steel[J]. Surf. Coat. Tech., 2017, 319: 104–109

    Article  CAS  Google Scholar 

  6. Wang W, Wang D, Han FS. Improvement of Corrosion Resistance of Twinning-Induced Plasticity Steel by Hot-dipping Aluminum with Subsequent Thermal Diffusion Treatment[J]. Mater. Lett., 2019, 248:60–64

    Article  CAS  Google Scholar 

  7. Barekatain H, Khoei S. High-Temperature Oxidation Behaviors of Plasma Electrolytic Oxidation Coating on Hot-Dip Aluminized HP40Nb Alloy[J]. Surf. Coat. Tech., 2020, 384:125 339

    Article  CAS  Google Scholar 

  8. Couto C P, Revilla R I, Politano R, et al. Influence of Austenitisation Temperatures during Hot Stamping on the Local Electrochemical Behaviour of 22MnB5 Steel Coated with Hot-dip Al-Si[J]. Corros. Sci., 2021, 190: 109 673

    Article  CAS  Google Scholar 

  9. Liu B, Yang Q, Wang Y. Intereaction and Intermetallic Phase Formation Between Aluminum and Stainless Steel[J]. Results Phys., 2019, 12: 514–524

    Article  Google Scholar 

  10. Okamoto NL, Okumura J, Higashi M, et al. Crystal Structure of η′-Fe3Al8; Low-Temperature Phase of η-Fe2Al5 Accompanied by an Ordered Arrangement of Al Atoms of Full Occupancy in the C-axis Chain Sites[J]. Acta Mater., 2017, 129: 290–299

    Article  CAS  Google Scholar 

  11. Liu YH, Chong XY, Jiang YH, et al. Mechanical Properties and Electronic Structures of Fe-Al Intermetallic[J]. Physica B, 2017, 506:1–11

    Article  CAS  Google Scholar 

  12. Tsukahara T, Takata N, Kobayashi S, et al. Mechanical Properties of Fe2Al5 and FeAl3 Intermetallic Phases at Ambient Temperature[J]. Tetsu To Hagane, 2016, 102 (2): 29–35

    Article  Google Scholar 

  13. Ding ZY, Hu QD, Lu WQ, et al. Microstructural Evolution and Growth Behavior of Intermetallic Compounds at the Liquid Al/Solid Fe Interface by Synchrotron X-ray Radiography[J]. Mater. Charact., 2017; 136: 157–164

    Article  Google Scholar 

  14. Chen NN, Wang M, Wang HP, et al. Microstructural and Mechanical Evolution of Al/Steel Interface with Fe2Al5 Growth in Resistance Spot Welding of Aluminum to Steel[J]. J. Manuf. Process., 2018, 34(A): 424–434

    Article  Google Scholar 

  15. Muhammad ZK, Jesper F, Per HN, et al. DFT Calculations Based Insight into Bonding Character and Strength of Fe2Al5 and Fe4Al13 Intermetallics at Al-Fe Joints[J]. Procedia Manufacturing, 2018, 15: 1 407–1 415

    Article  Google Scholar 

  16. Azimaee H, Sarfaraz M, Mirjalili M, et al. Effect of Silicon and Manganese on the Kinetics and Morphology of the Intermetallic Layer Growth during Hot-Dip Aluminizing[J]. Surf. Coat. Tech., 2019, 357: 483–496

    Article  CAS  Google Scholar 

  17. Jeong J I, Yang J H, Jung J H, et al. Super Anticorrosion of Aluminized Steel by a Controlled Mg Supply[J]. Sci. Rep., 2018, 8(1): 3 760

    Article  Google Scholar 

  18. Tu H, Wei, DS, Zhou SJ, et al. Effect of Mg on Microstructure and Growth Kinetics of Zn-22.3Al-1.1Si Coating[J]. J. Wuhan Univ. Technology-Mater. Sci. Ed., 2019, 34: 373–382

    Article  CAS  Google Scholar 

  19. Kyo Y, Yadav A P, Nishikata A, et al. Hydrogen Entry Behaviour of Newly Developed Al-Mg-Si Coating Produced by Physical Vapour Deposition-Science Direct[J]. Corros. Sci., 2011, 53(9): 3 043–3 047

    Article  CAS  Google Scholar 

  20. Sun SP, Li XP, Wang HJ, et al. Adsorption of Oxygen Atom on MoSi2 (110) Surface[J]. Appl. Surf. Sci., 2016, 382: 239–248

    Article  CAS  Google Scholar 

  21. Sun SP, Li XP, Wang HJ, et al. Prediction on Anisotropic Elasticity, Sound Velocity, and Thermodynamic Properties of MoSi2 under Pressure[J]. J. Alloys Compd., 2015, 652: 106–115

    Article  CAS  Google Scholar 

  22. Wang HJ, Xu XP, Sun SP, et al. First-Principles Calculations to Investigate the Anisotropic Elasticity and Thermodynamic Properties of FeAl3 under Pressure Effect[J]. Results Phys., 2021, 26: 104 361

    Article  Google Scholar 

  23. Wu Z, Pang M, Zhan Y, et al. The Bonding Characteristics of the Cu(111)/WC(0001) Interface: an Insight from First-Principle Calculations[J]. Vacuum, 2021, 191: 110 218

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmuller J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations using a Plane-Wave Basis Set[J]. Phys. Rev. B, 1996, 54(16): 11 169–11 186

    Article  CAS  Google Scholar 

  25. Perdew J P, Burke K M, Emzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77(18): 3 865–3 868

    Article  CAS  Google Scholar 

  26. Kresse G, Joubert J. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method[J]. Phys. Rev. B, 1999, 59(3): 1 758–1 775

    Article  CAS  Google Scholar 

  27. Yu J, Xin L, Wang J, et al. First-Principles Study of the Relaxation and Energy of BCC-Fe, FCC-Fe and AISI-304 Stainless Steel Surfaces[J]. Appl. Surf. Sci., 2009, 255(22): 9 032–9 039

    Article  CAS  Google Scholar 

  28. Monkhorst H J, Pack J D. Special Points for Brillouin-Zone Integrations[J]. Phys. Rev. B, 1976, 13(12): 5 188–5 192

    Article  Google Scholar 

  29. Li CX, Zhang WF. Improvement of Ge MOS Electrical and Interfacial Characteristics by using NdAlON as Interfacial Passivation Layer[J]. J. Wuhan Univ. Technol. -Mat. Sci. Ed., 2021, 36: 533–537

    Article  CAS  Google Scholar 

  30. Wu KX, Zha WS, Chen XL. Photocatalytic Activity of TiO2 Coatings Fabricated on Al2O3 by Mechanical Coating Technique[J]. J. Wuhan Univ. Technol. -Mat. Sci. Ed., 2021, 36:1–5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuping Su  (苏旭平) or Shunping Sun  (孙顺平).

Additional information

Conflict of interest

All authors declare that there are no competing interests.

Funded by the National Natural Science Foundation of China (No.51871030) and the Higher Education Science Foundation of Jiangsu Province of China (No.17KJA430006)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Su, X., Wang, J. et al. Segregation of Si and Mg at Fe(110)/Al(110) Interface. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 659–664 (2023). https://doi.org/10.1007/s11595-023-2742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2742-0

Key words

Navigation