Skip to main content
Log in

Microstructure, Texture Evolution, and Strain Hardening Behaviour of As-extruded Mg-Zn and Mg-Y Alloys under Compression

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Microstructure, texture evolution and strain hardening behaviour of the Mg-1Y and Mg-1Zn (wt%) alloys were investigated under room temperature compression. Microstructural characterization was performed by optical microscopy, scanning electron microscopy, electron back scattered diffraction and transmission electron microscopy. The experimental results show that Mg-1Zn alloy exhibits conventional three-stage strain hardening curves, while Mg-1Y alloy exhibits novel six-stage strain hardening curves. For Mg-1Y alloy, rare earth texture leads to weak tensile twinning activity in compression and consequently results in a moderate evolution to <0001> texture. Moreover, inefficient tensile twinning activity and weak slip-twinning interaction give rise to excellent ductility and high hardening capacity but low strain hardening rate. For Mg-1Zn alloy, basal texture leads to pronounced tensile twinning activity in compression and consequently results in rapid evolution to <0001> texture. The intense tensile twinning activity and strong slip-twinning interaction lead to high strain hardening rate but poor ductility and low hardening capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Mordike B, Ebert T. Magnesium: Properties-Applications-Potential[J]. Materials Science and Engineering: A, 2001, 302: 37–45

    Article  Google Scholar 

  2. Friedrich H, Mordike B. Magnesium Technology[M]. Springer, Berlin Heidelberg New York, 2006

    Google Scholar 

  3. Agnew S, Duygulu Ö. Plastic Anisotropy and the Role of Non-basal Slip in Magnesium Alloy AZ31B[J]. International Journal of Plasticity. 2005, 21: 1161–1193

    Article  CAS  Google Scholar 

  4. Chapuis A, Driver J. Temperature Dependency of Slip and Twinning in Plane Strain Compressed Magnesium Single Crystals[J]. Acta Materialia, 2011, 59: 1 986–1 994

    Article  CAS  Google Scholar 

  5. Barnett M. Twinning and the Ductility of Magnesium Alloys: Part I: Tension Twins[J]. Materials Science and Engineering: A, 2007, 464: 1–7

    Article  Google Scholar 

  6. Dobroň P, Chmelík F, Yi S, et al. Grain Size Effects on Deformation Twinning in an Extruded Magnesium Alloy Tested in Compression[J]. Scripta Materialia, 2011, 65: 424–427

    Article  Google Scholar 

  7. Robson J, Stanford N, Barnett M. Effect of Precipitate Shape on Slip and Twinning in Magnesium Alloys[J]. Acta Materialia, 2011, 59: 1 945–1 956

    Article  CAS  Google Scholar 

  8. Stanford N, Barnett M. Solute Strengthening of Prismatic Slip, Basal Slip and Twinning in Mg and Mg-Zn Binary Alloys[J]. International Journal of Plasticity, 2013, 47: 165–181

    Article  CAS  Google Scholar 

  9. Robson J, Stanford N, Barnett M. Effect of Particles in Promoting Twin Nucleation in a Mg-5wt% Zn Alloy[J]. Scripta Materialia, 2010, 63: 823–826

    Article  CAS  Google Scholar 

  10. Barnett M, Keshavarz Z, Beer A, et al. Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn[J]. Acta Materialia, 2004, 52: 5 093–5 103

    Article  CAS  Google Scholar 

  11. Stanford N, Marceau R, Barnett M. The Effect of High Yttrium Solute Concentration on the Twinning Behaviour of Magnesium Alloys[J]. Acta Materialia, 2015, 82: 447–456

    Article  CAS  Google Scholar 

  12. Hong S, Park S, Lee C. Strain Path Dependence of {10–12} Twinning Activity in a Polycrystalline Magnesium Alloy[J]. Scripta Materialia, 2011, 64: 145–148

    Article  CAS  Google Scholar 

  13. Park S, Hong S, Lee C. Activation Mode Dependent {10–12} Twinning Characteristics in a Polycrystalline Magnesium Alloy[J]. Scripta Materialia, 2010, 62: 202–205

    Article  CAS  Google Scholar 

  14. Barnett M, Sullivan A, Stanford N, et al. Texture Selection Mechanisms in Uniaxially Extruded Magnesium Alloys[J]. Scripta Materialia, 2010, 63: 721–724

    Article  CAS  Google Scholar 

  15. Ball E, Prangnell P. Tensile-Compressive Yield Asymmetries in High Strength Wrought Magnesium Alloys[J]. Scripta Metallurgica et Materialia, 1994, 31: 111–116

    Article  CAS  Google Scholar 

  16. Zhao X, Yan F, Zhang M, et al. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy[J]. Acta Metallurgica Sinica (English Letters), 2021, 34: 54–64

    Article  CAS  Google Scholar 

  17. Meng S, Yu H, Fan S, et al. Recent Progress and Development in Extrusion of Rare Earth Free Mg Alloys: A Review[J]. Acta Metallurgica Sinica (English Letters), 2019, 32: 145–168

    Article  CAS  Google Scholar 

  18. Liu Y, Zhao Y, Wang L, et al. Microstructure and Mechanical Properties of AZ31 Alloys Processed by Residual Heat Rolling[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2021, 36: 588–594

    Article  CAS  Google Scholar 

  19. Yi S, Davies C, Brokmeier H, et al. Deformation and Texture Evolution in AZ31 Magnesium Alloy during Uniaxial Loading[J]. Acta Materialia, 2006, 54: 549–562

    Article  CAS  Google Scholar 

  20. Bohlen J, Nürnberg M, Senn J, et al. The Texture and Anisotropy of Magnesium-Zinc-Rare earth Alloy Sheets[J]. Acta Materialia, 2007, 55: 2 101–2 112

    Article  CAS  Google Scholar 

  21. Fan Q, Xu H, Ma L, et al. Analysis of Hot Rolling Routes of AZ31B Magnesium Alloy and Prediction of Tensile Property of Hot-Rolled Sheets[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32: 451–458

    Article  CAS  Google Scholar 

  22. Bohlen J, Yi S, Letzig D, et al. Effect of Rare Earth Elements on the Microstructure and Texture Development in Magnesium-Manganese Alloys during Extrusion[J]. Materials Science and Engineering: A, 2010, 527: 7 092–7 098

    Article  Google Scholar 

  23. Stanford N. Micro-alloying Mg with Y, Ce, Gd and La for Texture Modification-A Comparative Study[J]. Materials Science and Engineering: A, 2010, 527: 2 669–2 677

    Article  Google Scholar 

  24. Yin S, Zhang Z, Liu X, et al. Effects of Y Content on the Microstructures and Mechanical Properties of Mg-5Zn-xY-0.6Zr Alloys[J] Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34: 138–144

    Article  CAS  Google Scholar 

  25. Zhao Y, Liao X, Cheng S, et al. Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys[J]. Advanced Materials, 2006, 18: 2 280–2 283

    Article  CAS  Google Scholar 

  26. Lei W, Zhu D, Wang H, et al. Microstructure and Mechanical Properties of Pure Magnesium Subjected to Hot Extrusion[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34: 1 193–1 196

    Article  CAS  Google Scholar 

  27. Huang C, Wu S, Li S, et al. Strain Hardening Behavior of Ultrafine-Grained Cu by Analyzing the Tensile Stress-Strain Curve[J]. Advanced Engineering Materials, 2008, 10: 434–438

    Article  CAS  Google Scholar 

  28. Kalidindi S, Salem S, Doherty R. Role of Deformation Twinning on Strain Hardening in Cubic and Hexagonal Polycrystalline Metals[J]. Advanced Engineering Materials, 2003, 5: 229–232

    Article  CAS  Google Scholar 

  29. Asgari H, Szpunar J, Odeshi A, et al. Effect of Grain Size on High Strain Rate Deformation of Rolled Mg-4Y-3RE Alloy in Compression[J]. Materials Science and Engineering: A, 2015, 633: 92–102

    Article  CAS  Google Scholar 

  30. Figueiredo R, Poggiali F, Silva C, et al. The Influence of Grain Size and Strain Rate on the Mechanical Behavior of Pure Magnesium[J]. Journal of Materials Science, 2015

  31. Zhao C, Chen X, Wang J, et al. Strain Hardening Behavior in Mg-Al Alloys at Room Temperature[J]. Advanced Engineering Materials, 2019, 21: 1 801 062

    Article  CAS  Google Scholar 

  32. Tahreen N, Zhang D, Pan F, et al. Influence of Yttrium Content on Phase Formation and Strain Hardening Behavior of Mg-Zn-Mn Magnesium Alloy[J]. Journal Alloys and Compounds, 2014, 615: 424–432

    Article  CAS  Google Scholar 

  33. Lu J, Yin D, Huang G, et al. Plastic Anisotropy and Deformation Behavior of Extruded Mg-Y Sheets at Elevated Temperatures[J]. Materials Science and Engineering: A, 2017, 700: 598–608

    Article  CAS  Google Scholar 

  34. Afrin N, Chen D, Cao X, et al. Strain Hardening Behavior of a Friction Stir Welded Magnesium Alloy[J]. Scripta Materialia, 2007, 57: 1 004–1 007

    Article  CAS  Google Scholar 

  35. Stanford N, Cottam R, Davis B, et al. Evaluating the Effect of Yttrium as a Solute Strengthener in Magnesium Using in situ Neutron Diffraction[J]. Acta Materialia, 2014, 78: 1–13

    Article  CAS  Google Scholar 

  36. Wu W, Jin L, Dong J, et al. Deformation Behavior and Texture Evolution in an Extruded Mg-1Gd Alloy during Uniaxial Compression[J]. Materials Science and Engineering: A, 2014, 593: 48–54

    Article  CAS  Google Scholar 

  37. Yu H, Xin Y, Wang M, et al. Hall-Petch Relationship in Mg Alloys: A Review[J]. Journal of Materials Science & Technology, 2018, 34: 248–256

    Article  CAS  Google Scholar 

  38. Liu Z and Li D. The Electronic Origin of Strengthening and Ductilizing Magnesium by Solid Solutes[J]. Acta Materialia, 2015, 89: 225–233

    Article  CAS  Google Scholar 

  39. Sandlöbes S, Pei Z, Friák M, et al. Ductility Improvement of Mg Alloys by Solid Solution: Ab Initio Modeling, Synthesis and Mechanical Properties[J]. Acta Materialia, 2014, 70: 92–104

    Article  Google Scholar 

  40. Bhattacharyya J, Wang F, Wu P, et al. Demonstration of Alloying, Thermal Activation, and Latent Hardening Effects on Quasi-static and Dynamic Polycrystal Plasticity of Mg Alloy, WE43-T5, Plate[J]. International Journal of Plasticity, 2016, 81: 123–151

    Article  CAS  Google Scholar 

  41. Somekawa H, Mukai T. Hall-Petch Relation for Deformation Twinning in Solid Solution Magnesium Alloys[J]. Materials Science and Engineering: A, 2013, 561: 378–385

    Article  CAS  Google Scholar 

  42. Gao L, Chen R, Han E. Effects of Rare-earth Elements Gd and Y on the Solid Solution Strengthening of Mg Alloys[J]. Journal of Alloys and Compounds, 2009, 481: 379–384

    Article  CAS  Google Scholar 

  43. Gao L, Chen R, Han E. Solid Solution Strengthening Behaviors in Binary Mg-Y Single Phase Alloys[J]. Journal of Alloys and Compounds, 2009, 472: 234–240

    Article  CAS  Google Scholar 

  44. Sedláček R, Blum W, Kratochvíl J, et al. Subgrain Formation during Deformation: Physical Origin and Consequences[J]. Metallurgical and Materials Transactions A, 2002, 33: 319–327

    Article  Google Scholar 

  45. Wang B, Xin R, Huang G, et al. Effect of Crystal Orientation on the Mechanical Properties and Strain Hardening Behavior of Magnesium Alloy AZ31 during Uniaxial Compression[J]. Materials Science and Engineering: A, 2012, 534: 588–593

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Yu  (于子健).

Additional information

Funded by the Beijing Municipal Natural Science Foundation (No. 2202004), the National Natural Science Foundation of China (No. 51801048), and the Basic Research Fund for Newly Enrolled Teachers and the Fund for Distinguished Young Scholars of China Academy of Space Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Xiao, T. & Yu, Z. Microstructure, Texture Evolution, and Strain Hardening Behaviour of As-extruded Mg-Zn and Mg-Y Alloys under Compression. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 430–439 (2023). https://doi.org/10.1007/s11595-023-2714-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2714-4

Key words

Navigation