Skip to main content

Advertisement

Log in

First-principles Study of Electronic Structural and Mechanical Properties of MgxLa(x=1, 2, 3) Compounds under Pressure

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The effects of pressure on structural, elastic and electronic properties of MgxLa (x=1, 2, 3) compounds are investigated by using CASTEP program based on the density functional theory. The calculated equilibrium lattice parameters at zero pressure agree well with available experimental and theoretical values. The calculated DOS show that the structure of these compounds remains mechanically stable and structural phase transformation is not induced with increasing pressure from 0 to 30 GPa, and their structural stability increases with pressure. The ductility of MgLa can be improved by increasing pressure, which is the same as Mg2La in 0–20 GPa, while brittle behavior turns into ductile behavior in 0–5 GPa for Mg3La. The resistance to volume deformation of MgxLa (x=1, 2, 3) compounds can be improved as the pressure increases. The shear deformation resistance and elastic stiffness of Mg3La can be enhanced by rising pressure, but MgLa and Mg2La increase first and then decrease when pressure is up to 25 GPa. In addition, the three compounds exhibit the elastic anisotropy with pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mordike B L, Ebert T. Magnesium: Properties-applications Potential[J]. Mater. Sci. Eng., A, 2001, 302(1): 37–45

    Article  Google Scholar 

  2. Potzies C, Kainer K U. Fatigue of Magnesium Alloys[J]. Adv. Eng. Mater., 2004, 6(5): 281–289

    Article  CAS  Google Scholar 

  3. Kulekci M K. Magnesium and Its Alloys Applications in Automotive Industry[J]. Int. J. Adv. Manuf. Technol., 2009, 39(9–10): 851–865

    Google Scholar 

  4. Mordike B L. Creep-Resistant Magnesium Alloys[J]. Mater. Sci. Eng. A, 2002, 324(1): 103–112

    Article  Google Scholar 

  5. Agnew S R, Nie J F. Preface to the Viewpoint Set on: The Current State of Magnesium Alloy Science and Technology[J]. Scr. Mater., 2010, 63(7): 671–673

    Article  CAS  Google Scholar 

  6. Fan J P, Fang L L, Xu B S. Effect of Trace Element La on Microstructure and Properties of Mg−8Al−4Sr−1Y Alloy[J]. Trans. Mater. Heat Treat., 2015, 36(3): 125–129

    CAS  Google Scholar 

  7. Liu W J, Cao F H, Chang L R, et al. Effect of Rare Earth Element Ce and La on Corrosion Behavior of AM60 Magnesium Alloy[J]. Corros. Sci., 2009, 51(6): 1 334–1 343

    Article  CAS  Google Scholar 

  8. Wei S H, Chen Y G, Tang Y B, et al. Compressive Creep Behavior of Mg−Sn−La Alloys[J]. Mater. Sci. Eng. A, 2009, 508(1): 59–63

    Article  Google Scholar 

  9. Zhang X D, Wei J J. Elastic, Lattice Dynamical, Thermal Stabilities and Thermodynamic Properties of BiF3-type Mg3RE Compounds from First-Principles Calculations[J]. Alloys Compd., 2016, 663: 565–573

    Article  CAS  Google Scholar 

  10. Chen Q, Huang Z W, Zhao Z D, et al. Thermal Stabilities, Elastic Properties and Electronic Structures of B2-MgRE (RE = Sc, Y, La) by First-Principles Calculations[J]. Comput. Mater. Sci., 2013, 67: 196–202

    Article  CAS  Google Scholar 

  11. Ganeshan S, Shang S L, Zhang H, et al. Elastic Constants of Binary Mg Compounds from First-Principles Calculations[J]. Intermetallics, 2009, 17(5): 313–318

    Article  CAS  Google Scholar 

  12. Perdew J P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas[J]. Phys. Rev. B, 1986, 33(12): 8 822–8 824

    Article  CAS  Google Scholar 

  13. Shi D M, Wen B, Melnik R. First-Principles Studies of Al−Ni Intermetallic Compounds[J]. J. Solid State Chem., 2009, 182(10): 2 664–2 669

    Article  CAS  Google Scholar 

  14. Laasonen K, Pasquarello A, Car R, et al. Car-Parrinellomolecular Dynamics with Vanderbilt Ultrasoft Pseudopotentials[J]. Phys. Rev. B, 1993, 47: 10 142

    Article  CAS  Google Scholar 

  15. Pack J D, Monkhors H J. Special Points for Brillouin-zone Integrations[J]. Phys. Rev. B, 1977, 16: 1 748–1 749

    Article  Google Scholar 

  16. Perdew J P, Burke K, Ernzerh M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77(18): 3 865–3 868

    Article  CAS  Google Scholar 

  17. Fischer T H, Almlof J. General Methods for Geometry and Wave Function Optimization[J]. J. Phys. Chem., 1992, 96(24): 9 768–9 774

    Article  CAS  Google Scholar 

  18. Iandelli A, Palenzona A. Atomic Size of Rare Earths in Intermetallic Compounds. MX Compounds of CsCl Type[J]. J. Less-Common Met., 1965, 9(1): 1–6

    Article  CAS  Google Scholar 

  19. Giovannin M, Marazza R, Saccone A, et al. Isothermal Section from 50 at% to 75 at% Mg of the Ternary System Y-La-Mg[J]. J. Alloys Compd., 1994, 203: 177–180

    Article  Google Scholar 

  20. Yang F, Wang J W, Ke J L, et al. Elastic Properties and Electronic Structures of Mg−Ce Intermetallic Compounds from First-Principles Calculations[J]. Phys. Status Solid B, 2011, 248(9): 2 097–2 102

    CAS  Google Scholar 

  21. Ouyang Y, Tao X M, Chen H M, et al. First-Principles Calculations of Mechanical and Thermodynamic Properties of the Laves-MgRE (RE = La, Ce, Pr, Nd, Pm, Sm, Gd)[J]. Comput. Mater. Sci., 2010, 47(2): 297–301

    Article  Google Scholar 

  22. Hong T, Watsonyang T J, Freeman A J, et al. Crystal Structure, Phase Stability, and Electronic Structure of Ti−Al Intermetallics: TiAl3[J]. Phys. Rev. B, 1990, 41(18): 12 462

    Article  CAS  Google Scholar 

  23. Wrobel J, Hector L G, Wolf W, et al. Thermodynamic and Mechanical Properties of Lanthanum-Magnesium Phases from Density Functional Theory[J]. J. Alloys Compd., 2012, 512(1): 296–310

    Article  CAS  Google Scholar 

  24. Grimvall G. Thermophysical Properties of Materials[M]. North Holland: Elsevier, 1999

    Google Scholar 

  25. Hill R. The Elastic Behaviour of a Crystalline Aggregate[J]. Proc. Phys. Soc. A, 1952, 65(5): 349–354

    Article  Google Scholar 

  26. Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle[J]. Z. Angew. Math. Mech, 1929, 9(1): 49–58

    Article  CAS  Google Scholar 

  27. Pugh S F. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals[J]. Philos. Mag., 1954, 45: 823–843

    Article  CAS  Google Scholar 

  28. Vaitheeswaran G, Kanchana V, Kumar R S, et al. High-Pressure Structural, Elastic, and Electronic Properties of the Scintillator Host Material KMgF3[J]. Phys. Rev. B, 2007, 76(1): 014 107

    Article  Google Scholar 

  29. Gao L, Zhou J, Sun Z M, et al. Electronic Origin of the Anomalous Solid Solution Hardening of Y and Gd in Mg:A First-Principles Study[J]. Chin. Sci. Bull., 2011, 56(10): 1 038–1 042

    Article  CAS  Google Scholar 

  30. Tvergaard V, Hutchinson J W. Microcracking in Ceramics Induced by Thermal Expansion or Elastic Anisotropy[J]. J. Am. Ceram. Soc., 2010, 71(3): 157–166

    Article  Google Scholar 

  31. Ranganathan S I, Ostoja-Starzewski M. Universal Elastic Anisotropy Index[J]. Phys. Rev. Lett., 2008, 101: 055 504

    Article  Google Scholar 

  32. Nye J F. Physical Properties of Crystals[M]. Oxford: Oxford University Press, 1985

    Google Scholar 

Download references

Funding

Funded by National Natural Science Foundation of China (Nos. U1610123, 51674226, 51574207, 51574206), Science and Technology Major Project of Shanxi Province (No.MC2016-06), International Science and Technology Cooperation Project of Shanxi Province (No. 2015081041), Research Project Supported by Shanxi Scholarship Council of China (No. 2016-Key 2), Transformation of Scientific and Technological Achievements Special Guide Project of Shanxi Province (No. 201604D131029), China Postdoctoral Science Foundation (No. 2017M611202)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Zhao  (赵宇宏).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, Y., Yang, X. et al. First-principles Study of Electronic Structural and Mechanical Properties of MgxLa(x=1, 2, 3) Compounds under Pressure. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 192–198 (2023). https://doi.org/10.1007/s11595-023-2681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2681-0

Key words

Navigation