Skip to main content
Log in

Influence of the Electrode Distance on Microstructure and Corrosion Resistance of Ni-Cr Alloyed Layers Deposited by Double Glow Plasma Surface Metallurgy

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Ni-Cr alloyed layers were synthesized on the surface of Q235 mild steel by double-glow plasma surface metallurgy with different electrode distance. The microstructure and phases of the alloyed layer were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and X-ray diffraction (XRD). The corrosion behavior of the Ni-Cr alloyed layers both in 3.5% NaCl and 0.5 M H2SO4 solution were systematically investigated by open-circuit potential (OCP), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The obtained results reveal that the Ni-Cr alloyed layer consists of a deposited layer and an inter-diffusion layer. With increasing the electrode distance, the relative thickness, microstructure and phase composition of the Ni-Cr alloyed layers vary greatly. Polarization data show the Ni-Cr alloyed layer with the electrode distance of 15 mm has highest corrosion resistance and lowest corrosion rate, while EIS results reveal the same trend. The highest protective efficiency in 3.5% NaCl and 0.5 M H2SO4 solution are 99.23% and 99.92%, respectively, obtained for the Ni-Cr alloyed layer with 15 mm electrode distance. When the electrode distance is too large, a thin and porosity Ni-Cr alloyed layer, caused by low plasma density and Kirkendall effect, will be obtained, and will decrease the protective efficiency in corrosive medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aslam J, Aslam R, Lone IH, et al. Inhibitory Effect of 2-Nitroacridone on Corrosion of Low Carbon Steel in 1M HCl Solution: An Experimental and Theoretical Approach[J]. Journal of Materials Research and Technology, 2020, 9(3): 4 061–4 075

    Article  CAS  Google Scholar 

  2. Deo Y, Guha S, Sarkar K, et al. Electrodeposited Ni-Cu alloy Coatings on Mild Steel for Enhanced Corrosion Properties[J]. Applied Surface Science, 2020, 515: 146 078

    Article  CAS  Google Scholar 

  3. Hoche H, Pusch C, Oechsner M. Corrosion and Wear Protection of Mild Steel Substrates by Innovative PVD Coatings[J]. Surface and Coatings Technology, 2020, 391: 125 659

    Article  CAS  Google Scholar 

  4. Zhang W, Chen L, Wu Y-C, et al. Preparation of Methylacridinium Iodides Self-assembled Monolayers and Its Anti-corrosion Properties for Mild Steel in Seawater: Experimental and Computational Studies[J]. Journal of Molecular Liquids, 2020: 113 545

  5. Aliyu A, Srivastava C. Microstructure and Corrosion Properties of MnCrFeCoNi High Entropy Alloy-graphene Oxide Composite Coatings[J]. Materialia, 2019, 5: 100 249

    Article  CAS  Google Scholar 

  6. Dolati AG, Ghorbani M, Afshar A. The Electrodeposition of Quaternary Fe-Cr-Ni-Mo Alloys from the Chloride-complexing Agents Electrolyte. Part I. Processing[J]. Surface and Coatings Technology, 2003, 166(2): 105–110

    Article  CAS  Google Scholar 

  7. Takeuchi M, Nakajima Y, Hoshino K, et al. Controls of Chromium and Third Element Contents in Nickel-base Alloys for Corrosion Resistant Alloys in Hot HNO3-HF Mixtures[J]. Journal of Alloys and Compounds, 2010, 506(1): 194–200

    Article  CAS  Google Scholar 

  8. Tavoosi M, Barahimi A. Corrosion Behavior of Amorphous-nanocrystalline Fe-Ni-Cr Electrodeposited Coatings[J]. Surfaces and Interfaces, 2017, 8: 103–111

    Article  CAS  Google Scholar 

  9. Zhang H, Liu L, Bai J, et al. Corrosion Behavior and Microstructure of Electrodeposited Nano-layered Ni-Cr Coatings[J]. Thin Solid Films, 2015, 595: 36–40

    Article  CAS  Google Scholar 

  10. Huang CA, Chen CY, Chen CC, et al. Microstructure Analysis of a Cr-Ni Multilayer Pulse-electroplated in a Bath Containing Trivalent Chromium and Divalent Nickel Ions[J]. Surface and Coatings Technology, 2014, 255: 153–157

    Article  CAS  Google Scholar 

  11. Razaghi Z, Rezaei M, Tabaian SH. Electrochemical Noise and Impedance Study on the Corrosion of Electroplated Ni-Cr Coatings in HBF4 Aqueous Solution[J]. Journal of Electroanalytical Chemistry, 2020, 859: 113 838

    Article  CAS  Google Scholar 

  12. Garcia RP, Canobre SC, Costa HL. Microabrasion-corrosion Resistance of Ni-Cr Superalloys Deposited by Plasma Transferred arc (PTA) Welding[J]. Tribology International, 2020, 143: 106 080

    Article  CAS  Google Scholar 

  13. Pileggi R, Tului M, Stocchi D, et al. Tribo-corrosion Behaviour of Chromium Carbide Based Coatings Deposited by HVOF[J]. Surface and Coatings Technology, 2015, 268: 247–251

    Article  CAS  Google Scholar 

  14. Sadeghimeresht E, Markocsan N, Nylén P. Microstructural and Electrochemical Characterization of Ni-based bi-layer Coatings Produced by the HVAF Process[J]. Surface and Coatings Technology, 2016, 304: 606–619

    Article  CAS  Google Scholar 

  15. Sadeghimeresht E, Markocsan N, Nylén P, et al. Corrosion Performance of Bi-layer Ni/Cr2C3-NiCr HVAF Thermal Spray Coating[J]. Applied Surface Science, 2016, 369: 470–481

    Article  CAS  Google Scholar 

  16. Hao E, Liu X, An Y, et al. The Coupling Effect of Immersion Corrosion and Cavitation Erosion of NiCoCrAlYTa Coatings in Artificial Seawater[J]. Corrosion Science, 2020, 169: 108 635

    Article  CAS  Google Scholar 

  17. Xu Z, Liu X, Zhang P, et al. Double Glow Plasma Surface Alloying and Plasma Nitriding[J]. Surface and Coatings Technology, 2007, 201(9): 4822–4 825

    Article  CAS  Google Scholar 

  18. Dong Y, Li X, Tian L, et al. Towards Long-lasting Antibacterial Stainless Steel Surfaces by Combining Double Glow Plasma Silvering with Active Screen Plasma Nitriding[J]. Acta Biomaterialia, 2011, 7(1): 447–457

    Article  CAS  Google Scholar 

  19. Bendo T, Maliska AM, Acuna JJS, et al. The Effect of Mo on the Characteristics of a Plasma Nitrided Layer of Sintered Iron[J]. Applied Surface Science, 2016, 363: 29–36

    Article  CAS  Google Scholar 

  20. Ji X C, Li X Y, Dong Y C, et al. Synthesis and in-vitro Antibacterial Properties of a Functionally Graded Ag Impregnated Composite Surface[J]. Materials Science & Engineering C-Materials for Biological Applications, 2019, 99: 150–158

    Article  CAS  Google Scholar 

  21. Lin N, Zhang L, Zou J, et al. A Combined Surface Treatment of Surface Texturing-double Glow Plasma Surface Titanizing on AISI 316 Stainless Steel to Combat Surface Damage: Comparative Appraisals of Corrosion Resistance and Wear Resistance[J]. Applied Surface Science, 2019, 493: 747–765

    Article  CAS  Google Scholar 

  22. Jiang J, Hu J, Yang X, et al. Microstructure and Annealing Behavior of Cr-coatings Deposited by Double Glow Plasma on AISI 5140 Steel[J]. Results in Physics, 2019, 15: 102 674

    Article  Google Scholar 

  23. Yuan S, Lin N, Zeng Q, et al. Recent Developments in Research of Double Glow Plasma Surface Alloying Technology: A Brief Review[J]. Journal of Materials Research and Technology, 2020, 9(3): 6 859–6 882

    Article  CAS  Google Scholar 

  24. Stern M, Geary AL. Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves[J]. Journal of the Electrochemical Society, 1957, 104: 56–63

    Article  CAS  Google Scholar 

  25. Creus J, Mazille H, Idrissi H. Porosity Evaluation of Protective Coatings onto Steel, Through Electrochemical Techniques[J]. Surface and Coatings Technology, 2000, 130(2): 224–232

    Article  CAS  Google Scholar 

  26. Zeng J, Hu J, Yang X, et al. Microstructure and Formation Mechanism of the Si-Cr Dual-alloyed Coating Prepared by Pack-cementation[J]. Surface and Coatings Technology, 2020, 399: 126 142

    Article  CAS  Google Scholar 

  27. Paz y Puente AE, Dunand DC. Effect of Cr Content on Interdiffusion and Kirkendall Pore Formation during Homogenization of Pack-aluminized Ni and Ni-Cr Wires[J]. Intermetallics, 2018, 101: 108–115

    Article  CAS  Google Scholar 

  28. Zhao X, Duan L, Wang Y. Fast Interdiffusion and Kirkendall Effects of SiC-coated C/SiC Composites Joined by a Ti-Nb-Ti Interlayer via Spark Plasma Sintering[J]. Journal of the European Ceramic Society, 2019, 39(5): 1 757–1 765

    Article  CAS  Google Scholar 

  29. Xu Z, Xiong FF. Plasma Surface Metallurgy[M]. Springer, Singapore, 2017

    Book  Google Scholar 

  30. Wu H, Zhao X, Li J, et al. Effect of Processing Factors on the Microstructure and Gradual Diffusion of Tungstenized Layers[J]. Applied Surface Science, 2019, 477: 232–240

    Article  CAS  Google Scholar 

  31. Yuan S, Lin N, Zou J, et al. Manipulation Tribological Behavior of Ti6Al4V Alloy Via a Duplex Treatment of Double Glow Plasma Surface Molybdenizing-laser Surface Texturing (LST)[J]. Journal of Materials Research and Technology, 2020, 9(3): 6 360–6 375

    Article  CAS  Google Scholar 

  32. Inman IA, Datta PS. Studies of High Temperature Sliding Wear of Metallic Dissimilar Interfaces IV: Nimonic 80A Versus Incoloy 800HT[J]. Tribology International, 2011, 44(12): 1 902–1 919

    Article  CAS  Google Scholar 

  33. Song SG, Tan SL, Qi XX, et al. Effect of Ball Peening of Substrate on Microstructure, Phase Evolution and Properties of Electrophoretically Deposited YSZ/(Ni, Al) Composite Coatings[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(11): 2 966–2 975

    Article  CAS  Google Scholar 

  34. Liu B, Wei X, Wang W, et al. Corrosion Behavior of Ni-based Alloys in Molten NaCl-CaCl2-MgCl2 Eutectic Salt for Concentrating Solar Power[J]. Solar Energy Materials and Solar Cells, 2017, 170: 77–86

    Article  CAS  Google Scholar 

  35. Chidiebere MA, Oguzie EE, Liu L, et al. Adsorption and Corrosion Inhibiting Effect of Riboflavin on Q235 Ild Steel Corrosion in Acidic Environments[J]. Materials Chemistry and Physics, 2015, 156: 95–104

    Article  CAS  Google Scholar 

  36. Oladijo OP, Mathabatha MH, Popoola API, et al. Characterization and Corrosion Behaviour of Plasma Sprayed Zn-Sn Alloy Coating on Mild Steel[J]. Surface and Coatings Technology, 2018, 352: 654–661

    Article  CAS  Google Scholar 

  37. Morad MS, El-Dean AMK. 2,2′-Dithiobis(3-cyano-4,6-dimethylpyridine): A New Class of Acid Corrosion Inhibitors for Mild Steel[J]. Corrosion Science, 2006, 48(11): 3 398–3 412

    Article  CAS  Google Scholar 

  38. Tebbji K, Oudda H, Hammouti B, et al. Inhibitive Action of Two Bipyrazolic Isomers Towards Corrosion of Steel in 1M HCl Solution[J]. Applied Surface Science, 2005, 241(3): 326–334

    Article  CAS  Google Scholar 

  39. Brooks AR. On the Role of Cr in the Passivity of Stainless Steel[J]. Journal of The Electrochemical Society, 1986, 133(12): 2 459

    Article  CAS  Google Scholar 

  40. Morcillo M, Díaz I, Cano H, et al. Atmospheric Corrosion of Weathering Steels. Overview for Engineers. Part I: Basic Concepts[J]. Construction and Building Materials, 2019, 213: 723–737

    Article  Google Scholar 

  41. Wegrelius L. Passivation of Stainless Steels in Hydrochloric Acid[J]. Journal of the Electrochemical Society, 1999, 146(4): 1 397

    Article  CAS  Google Scholar 

  42. Wang SG, Sun M, Long K, et al. The Electronic Structure Characterization of Oxide Film on Bulk Nanocrystalline 304 Stainless Teel in Hydrochloric Acid Solution[J]. Electrochimica Acta, 2013, 112: 371–377

    Article  CAS  Google Scholar 

  43. Wang ZB, Hu HX, Zheng YG. Synergistic Effects of Fluoride and Chloride on General Corrosion Behavior of AISI 316 Stainless Steel and Pure Titanium in H2SO4 Solutions[J]. Corrosion Science, 2018, 130: 203–217

    Article  CAS  Google Scholar 

  44. Mansfeld F, Kendig M W. Evaluation of Anodized Aluminum Surfaces with Electrochemical Impedance Spectroscopy[J]. Journal of The Electrochemical Society, 1988, 135(4): 828–833

    Article  CAS  Google Scholar 

  45. Veloz MA, González I. Electrochemical Study of Carbon Steel Corrosion in Buffered Acetic Acid Solutions with Chlorides and H2S[J]. Electrochimica Acta, 2002, 48(2): 135–144

    Article  CAS  Google Scholar 

  46. Amin MA, Abd El-Rehim SS, El-Sherbini EEF, et al. The Inhibition of Low Carbon Steel Corrosion in Hydrochloric Acid Solutions by Succinic Acid: Part I. Weight Loss, Polarization, EIS, PZC, EDX and SEM Studies[J]. Electrochimica Acta, 2007, 52(11): 3 588–3 600

    Article  CAS  Google Scholar 

  47. Sherif EM, Park S-M. Effects of 1,4-naphthoquinone on Aluminum Corrosion in 0.50M Sodium Chloride Solutions[J]. Electrochimica Acta, 2006, 51(7): 1 313–1 321

    Article  CAS  Google Scholar 

  48. Cao CN. Principles of Electrochemistry of Corrosion[M]. Chemical Industry Press, Beijing, 2008

    Google Scholar 

  49. Liu H, Wei J, Dong J, et al. Influence of Cementite Spheroidization on Relieving the Micro-galvanic Effect of Ferrite-pearlite Steel in Acidic Chloride Environment[J]. Journal of Materials Science & Technology, 2021, 61: 234–246

    Article  CAS  Google Scholar 

  50. Soltis J. Passivity Breakdown, Pit Initiation and Propagation of Pits in Metallic Materials — Review[J]. Corrosion Science, 2015, 90: 5–22

    Article  CAS  Google Scholar 

  51. Trompette JL. The Comparative Breakdown of Passivity of Tin by Fluorides and Chlorides Interpreted Through the ‘Law of Matching Affinities’ Concept [J]. Corrosion Science, 2015, 94: 288–293

    Article  CAS  Google Scholar 

  52. Obot IB, Obi-Egbedi NO. Adsorption Properties and Inhibition of Mild steel Corrosion in Sulphuric Acid Solution by Ketoconazole: Experimental and Theoretical Investigation[J]. Corrosion Science, 2010, 52(1): 198–204

    Article  CAS  Google Scholar 

  53. Fatoba OS, Popoola API, Fedotova T. Characterization and Corrosion Behaviour of Zn-Sn Binary Alloy Coatings in 0.5 M H2SO4 Solution[J]. J. Electrochem. Sci. Technol., 2015, 6(2): 65–74

    Article  CAS  Google Scholar 

Download references

Funding

Funded by the National Natural Science Foundation of China (51704167 and 51764041), and the Aeronautical Science Foundation of China (2016ZF56020)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Huang  (黄俊).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Yang, S., Cui, S. et al. Influence of the Electrode Distance on Microstructure and Corrosion Resistance of Ni-Cr Alloyed Layers Deposited by Double Glow Plasma Surface Metallurgy. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 1204–1215 (2022). https://doi.org/10.1007/s11595-022-2653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2653-5

Key words

Navigation