Skip to main content
Log in

Characteristic of Near-surface Microstructure and Its Effects on the Torsion Performance of Cold Drawn Pearlitic Steel Wires for Bridge Cables

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The characteristic of near-surface microstructure and its effects on the torsion performance of cold-drawn pearlitic steel wires for bridge cables were investigated by focused ion beam-scanning electron microscope, transmission electron microscopy and differential scanning calorimetry. The samples with similar tensile strength before and after hot-dip galvanizing process are, respectively, characterized as delaminated and non-delaminated in torsion test which indicates that the tensile strength is independent of the toughness value (i e, reduction area and torsion ability). It is interesting to find that there exists submicron granular ferrite on near-surface of the wires, which can be attributed to dislocation rearrangement and sub-grains rotation during cold drawing and hot-dip galvanizing process. And their distribution can suggest homogeneousness of deformation degree to a certain extent: the closer to the surface of their distribution, the more homogeneous deformation of the wires. There is a close relationship between the thermal stability of the cementite layer and distribution of granular ferrite: differential scanning calorimetry (DSC) analysis shows that the sample is accompanied by submicron granular ferrite which is located closer to the surface has higher thermal stability under galvanizing temperature (450 °C). A new mechanism of the torsion delamination of pearlitic steel wires is discussed in terms of the thermal stability of the cementite layer and distribution of granular ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiu H X. Microstructure and Deformation Research of High Carbon Wire Rod for Galvanized Steel Wire[D]. Nanjing: Southeast University, 2012

    Google Scholar 

  2. Guo N. A Study on Microstrucutal Characterization and Mechanical Properties of Cold Drawing Pearlitic Steel Wires for Bridge Cable[D]. Chongqing: Chongqing University, 2012

    Google Scholar 

  3. Lee S K, Ko D C, Kim B M. Pass Schedule of Wire Drawing Process to Prevent Delamination for High Strength Steel Cord Wire[J]. Mater. Des., 2009, 30(8): 2 823–2 830

    Article  Google Scholar 

  4. Hono K, Ohnuma M, Murayama M, et al. Cementite Decomposition in Heavily Drawn Pearlite Steel Wire[J]. Scripta Mater., 2001, 44(6): 977–983

    Article  CAS  Google Scholar 

  5. Gavrilijuk V. Comment on “Cementite Decomposition in Heavily Drawn Pearlite Steel Wire” [J]. Scripta Mater., 2002, 46(2): 175–177

    Article  Google Scholar 

  6. Gavriljuk V G. Decomposition of Cementite in Pearlitic Steel due to Plastic Deformation[J]. Mater. Sci. Eng. A, 2003, 345(1-2): 81–89

    Article  Google Scholar 

  7. Li Y J, Choi P, Borchers C, et al. Atomic-scale Mechanisms of Deformation-induced Cementite Decomposition in Pearlite[J]. Acta Mater., 2011, 59(10): 3 965–3 977

    Article  CAS  Google Scholar 

  8. Ma Z Q. Investigation of Torsion Property of SWRS82B Galvanizing Steel Wire for Bridge Cable and Its Influencing Factor[D]. Nanjing: Southeast University, 2012

    Google Scholar 

  9. Zhang D, Godfrey A, Liu W. Microstructure, Ferrite Orientation and Texture Evolution of Pearlitic Steel Wire during Cold Drawing[J]. Acta. Metall. Sin., 2010, 46(2): 141–146

    Article  CAS  Google Scholar 

  10. Liu Y, Jiang Q, Wang G, et al. Influence of Microstructures and Textures on the Torsional Behavior of Pearlitic Wires[J]. J. Mater. Sci. Technol., 2005, 21(3): 357–360

    Article  Google Scholar 

  11. Maruyama N, Tarui T, Tashiro H. Atom Probe Study on the Ductility of Drawn Pearlitic Steels[J]. Scripta Mater., 2002, 46(8): 599–603

    Article  CAS  Google Scholar 

  12. Zhang X, Godfrey A, Huang X, et al. Microstructure and Strengthening Mechanisms in Cold-drawn Pearlitic Steel Wire[J]. Acta Mater., 2011, 59(9): 3 422–3 430

    Article  CAS  Google Scholar 

  13. Fang F, Zhao Y, Liu P, et al. Deformation of Cementite in Cold Drawn Pearlitic Steel Wire[J]. Mater. Sci. Eng. A, 2014, 608: 11–15

    Article  CAS  Google Scholar 

  14. Li Y J, Choi P, C Borchers, et al. Atomic-scale Mechanisms of Deformation-induced Cementite Decomposition in Pearlite[J]. Acta Mater., 2011, 59(10): 3 965–3 977

    Article  CAS  Google Scholar 

  15. Herbig M, Raabe D, Li Y J, et al. Atomic-scale Quantification of Grain Boundary Segregation in Nanocrystalline Material[J]. Phys. Rev. Lett., 2014, 112(23): 126 103

    Article  CAS  Google Scholar 

  16. Li Y J, Choi P, Borchers C, et al. Atom Probe Tomography Characterization of Heavily Cold Drawn Pearlitic Steel Wire[J]. Ultramicroscopy, 2011, 111(6): 628–632

    Article  CAS  Google Scholar 

  17. Zhang X, Godfrey A, Hansen N, et al. Hierarchical Structures in Colddrawn Pearlitic Steel Wire[J]. Acta Mater., 2013, 61(13): 4 898–4 909

    Article  CAS  Google Scholar 

  18. Raabe D, Choi P P, Li Y, et al. Metallic Composites Processed via Extreme Deformation: Toward the Limits of Strength in Bulk Materials[J]. MRS Bull., 2010, 35(12): 982–991

    Article  CAS  Google Scholar 

  19. Song R Ponge D, Raabe D. Improvement of the Work Hardening Rate of Ultrafine Grained Steels through Second Phase Particles[J]. Scr. Mater., 2005, 52(11): 1 075–1 080

    Article  CAS  Google Scholar 

  20. Mutoh Y, Korda A A, Miyashita Y, et al. Stress Shielding and Fatigue Crack Growth Resistance in Ferritic-pearlitic Steel[J]. Materials Sci. Eng. A, 2007, 468–470: 114–119

    Article  Google Scholar 

  21. Li D, Wei Y, Song J, et al. Effect of the Heat-treatment Temperature on the Mechanical Properties and Microstructural Evolution of Coldrolled Twinning-induced Plasticity Steel[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30: 386–391

    Article  CAS  Google Scholar 

  22. Li Z, Wu D, Lü W, et al. Effect of Holding Time on the Microstructure and Mechanical Properties of Dual-Phase Steel during Intercritical Annealing[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30(1): 156–161

    Article  CAS  Google Scholar 

  23. Fand D, He F, Xie J, et al. Calibration of Binding Energy Positions with Cls for XPS Results[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35(4): 711–718

    Article  Google Scholar 

  24. Ning G, Baifeng L, Bingshu W, et al. Microstructure and Texture Evolution in Fully Pearlitic Steel During Wire Drawing[J]. Science China Technological Sciences, 2013, 56(5): 1 139–1 146

    Article  Google Scholar 

  25. Tanaka M, Saito H, Yasumaru M, et al. Nature of Delamination Cracks in Pearlitic Steels[J]. Scripta Mater., 2016, 112: 32–36

    Article  CAS  Google Scholar 

  26. Zhou L, Fang F, Wang L, et al. Torsion Delamination and Recrystallized Cementite of Heavy Drawing Pearlitic Wires after Low Temperature Annealing[J]. Mater. Sci. Eng. A, 2018, 713(24): 52–60

    Article  CAS  Google Scholar 

  27. Joung S, U Kang, S Hong, et al. Aging Eehavior and Delamination in Cold Drawn and Post-deformation Annealed Hyper-eutectoid Steel Wires[J]. Mater. Sci. Eng. A, 2013, 586: 171–177

    Article  CAS  Google Scholar 

  28. Baek H M, Hwang S K, Joo H S, et al. The Effect of A Non-circular Drawing Sequence on Delamination Characteristics of Pearlitic Steel Wire[J]. Mater. Des., 2014, 62: 137–148

    Article  CAS  Google Scholar 

  29. Park D, Kang E, W Nam. The Prediction of the Occurrence of the Delamination in Cold Drawn Hyper-eutectoid Steel Wires[J]. J. Mater. Process. Technol., 2007, 187–188: 178–181

    Article  Google Scholar 

  30. Lee JW, Lee JC, Lee YS, et al. Effects of Post-deformation Annealing Conditions on the Behavior of Lamellar Cementite and the Occurrence of Delamination in Cold-drawn Steel Wires[J]. J. Mater. Process. Technol., 2009, 209: 5 300–5 304

    Article  CAS  Google Scholar 

  31. Yang Y S, Bae J G, Park C G. Nanostructure and Mechanical Properties of Heavily Cold-Drawn Steel Wires[J]. Mater. Sci. Eng. A, 2009, 508(1/2): 148–155

    Article  Google Scholar 

  32. Suzuki T, Tomota Y, Isaka M, et al. Strength Anisotropy and Residual Stress in Drawn Pearlite Steel Wire[J]. ISIJ Int., 2004, 44(8): 1 426–1 430

    Article  CAS  Google Scholar 

  33. Liang L, Xiang L, Wang Y, et al. Ratchetting in Cold-Drawn Pearlitic Steel Wires[J]. Metallurgical and Materials Transactions A, 2019, 50A(10): 4 561–4 568

    Article  Google Scholar 

  34. Zhang F, Mao X P, Bao S Q, et al. Microstructure Evolution and Its Effects on the Mechanical Behavior of Cold Drawn Pearlite Steel Wires for Bridge Cables[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2022, 37(1): 96–103

    Article  CAS  Google Scholar 

  35. Languillaume J, Kapelski G, Baudelet B. Cementite Dissolution in Heavily Cold Drawn Pearlitic Steel Wires[J]. Acta Mater., 1997, 45(3): 1 201–1 212

    Article  CAS  Google Scholar 

  36. Li Y J, Choi P, Borchers C, et al. Atom Probe Tomography Characterization of Heavily Cold Drawn Pearlitic Steel Wire[J]. Ultramicroscopy, 2011, 111(6): 628–632

    Article  CAS  Google Scholar 

  37. Lamontagne A, Massardier V, Sauvage X, et al. Evolution of Carbon Distribution and Mechanical Properties during the Static Strain Ageing of Heavily Drawn Pearlitic Steel Wires[J]. Mater. Sci. Eng. A, 2016, 667: 115–124

    Article  CAS  Google Scholar 

  38. Fang F, Zhou L C, Hu X J, et al. Microstructure and Mechanical Properties of Cold-drawn Pearlitic Wires Affect by Inherited Texture[J]. Mater. Des., 2015, 79: 60–67

    Article  CAS  Google Scholar 

  39. Wei Z M, Liang Y, Liang Y L, et al. Effect of Interlamellar Pearlite Spacing and Pro-eutectoid Ferrite on Fracture Toughness of High-carbon Steel[J]. Trans. Mater. Heat Treat., 2016, 37(1): 126–132

    CAS  Google Scholar 

Download references

Funding

Funded by the National Key R&D Program of China (No. 2017YFB0304801)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqian Bao  (鲍思前).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Mao, X., Bao, S. et al. Characteristic of Near-surface Microstructure and Its Effects on the Torsion Performance of Cold Drawn Pearlitic Steel Wires for Bridge Cables. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 992–999 (2022). https://doi.org/10.1007/s11595-022-2622-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2622-z

Key words

Navigation