Skip to main content
Log in

The Solidification Behavior of Mg-9Al-2Ca Alloy under Furnace Cooling

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

To understand the solidification pathway and microstructure evolution of Mg-9Al-2Ca alloy, the cooling curve of the alloy solidified under furnace cooling was measured and the water-quenched samples were observed. The experimental results show that the matrix phase of α-Mg dendrites is first generated at 596 °C during the solidification process, then the eutectic phases of Al2Ca and Mg17Al12 are formed at 518 and 447 °C, respectively, and the solidification is terminated at 436 °C. In the process of solidification, the seaweed dendrites of α-Mg get coarser and are gradually transformed into the global dendrites; besides, the secondary dendrite arms spacing (SDAS) of α-Mg as well as the solid fraction are both increased, while the increasing rate of SDAS of α-Mg and the solid fraction in the temperature region of 600–550 °C is faster than that in the temperature region of 550–436 °C. And a power function relationship can be used to illustrate the change of the SDAS and the solid fraction with the temperature of solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiu W, Liu ZQ, Yu RZ, et al. Utilization of VN Particles for Grain Refinement and Mechanical Properties of AZ31 Magnesium Alloy[J]. J. Alloys. Comp., 2019, 781: 1150–1158

    Article  CAS  Google Scholar 

  2. Liu Y, Zhao YQ, Wang L, et al. Microstructure and Mechanical Properties of AZ31 Alloys Processed by Residual Heat Rolling[J]. J. Wuhan Univ. Technol.-Mat. Sci. Ed., 2021, 36(4): 588–594

    Article  CAS  Google Scholar 

  3. Dargusch MS, Pettersen K, Nogita K, et al. The Effect of Aluminium Content on the Mechanical Properties and Microstructure of Die Cast Binary Magnesium-Aluminium Alloys[J]. Mater. Trans., 2006, 47: 977–982

    Article  CAS  Google Scholar 

  4. Luo AA, Powell BR, Sachdev AK. Computational Phase Equilibria and Experimental Investigation of Magnesium-Aluminum-Calcium Alloys[J]. Intermetallics, 2012, 24: 22–29

    Article  CAS  Google Scholar 

  5. Liang SM, Chen RS, Blandin JJ, et al. Thermal Analysis and Solidification Pathways of Mg-Al-Ca System Alloys[J]. Mater. Sci. Eng. A, 2008, 480: 365–372

    Article  Google Scholar 

  6. Ghoncheh MH, Shabestari SG, Abbasi MH. Effect of Cooling Rate on the Microstructure and Solidification Characteristics of Al2024 Alloy Using Computer-aided Thermal Analysis Technique[J]. J. Therm. Anal. Calorim., 2014, 117: 1253–1261

    Article  CAS  Google Scholar 

  7. Król M. Solid State Phenomena[M]. Trans. Tech. Publications, Switzerland, 2018

    Google Scholar 

  8. Yavari F, Shabestari SG. Effect of Cooling Rate and Al Content on Solidification Characteristics of AZ Magnesium Alloys Using Cooling Curve Thermal Analysis[J]. J. Therm. Anal. Calorim., 2017, 129: 655–662

    Article  CAS  Google Scholar 

  9. Emadi D, Whiting LV, Nafisi S, et al. Applications of Thermal Analysis in Quality Control of Solidification Processes[J]. J. Therm. Anal. Calorim., 2005, 81: 235–242

    Article  CAS  Google Scholar 

  10. Jafari H, Idris MH, Ourdjini A, et al. In situ Melting and Solidification Assessment of AZ91D Granules by Computer-aided Thermal Analysis During Investment Casting Process[J]. Mater. Des., 2013, 50: 181–190

    Article  CAS  Google Scholar 

  11. Mirković D, Schmid-Fetzer R. Solidification Curves for Commercial Mg Alloys Obtained from Heat-transfer Modeled DTA Experiments[J]. Zeitschrift für Metallkunde., 2006, 97: 119–129

    Google Scholar 

  12. Suzuki A, Saddock ND, Jones JW, et al. Solidification Paths and Eutectic Intermetallic Phases in Mg-Al-Ca Ternary Alloys[J]. Acta. Mater., 2005, 53: 2823–2834

    Article  CAS  Google Scholar 

  13. Li JL, Chen RS, Ma YQ, et al. Computer-aided Cooling Curve Thermal Analysis and Microstructural Characterization of Mg-Gd-Y-Zr System Alloys[J]. Thermochim. Acta., 2014, 590: 232–241

    Article  CAS  Google Scholar 

  14. Farahany S, Bakhsheshi-Rad HR, Idris MH, et al. In-situ Thermal Analysis and Macroscopical Characterization of Mg-xCa and Mg-0.5Ca-xZn Alloy Systems[J]. Thermochim. Acta., 2012, 527: 180–189

    Article  CAS  Google Scholar 

  15. Ninomiya R, Ojiro T, Kubota K. Improved Heat Resistance of Mg-Al Alloys by the Ca Addition[J]. Acta. Metal. Mater., 1995, 43(2): 669–674

    Article  CAS  Google Scholar 

Download references

Funding

Funded by the Ph D Research Startup Foundation of Jining University(No.2017BSZX02)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanming Ji  (冀焕明).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, H. The Solidification Behavior of Mg-9Al-2Ca Alloy under Furnace Cooling. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 735–739 (2022). https://doi.org/10.1007/s11595-022-2589-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2589-9

Key words

Navigation