Skip to main content
Log in

Effect of Ga2O3-doping on Properties and Structure of ZBLAN Glass

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

It is interesting to explore a novel oxyfluoride glass with good glass stability to be applied in optical communication and optical windows at infrared (IR) wavelength. We demonstrated a new glass of Ga2O3-doped ZrF4−BaF2−LaF3−AlF3−NaF (ZBLAN) glass using a melt-quenched technique. The effect of Ga2O3-doping on glass properties and structure was characterized by differential thermal analysis (DTA), IR spectra, Raman spectra, and X-ray diffraction (XRD). It is found that the glass thermal stability (ΔT) increases by 14% when the addition of Ga2O3 reaches 1mol%. With the increase of Ga2O3 content, the density and refractive index of the glasses increase. Ga2O3-doping does not affect the IR cut-off edge and maintains the transmittance near 90% in the range of 2.5–5 µm, which is almost equal to the undoped sample. Ga2O3-doping hardly changes the initial coordinated structure of Zr4+ according to the results of IR spectra and Raman spectra. Ga3+ holds in the interstice site of the network coordinated with F and the part of O2− introduced by Ga2O3 is coordinated with Al3+ forming Al−O bond. This study offers a new glass composition that may be potentially used in fabricating mid-IR optical fiber and large-size glasses for IR windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang L, Li Y, Zhang B, et al. 30-W Supercontinuum Generation based on ZBLAN Fiber in an All-fiber Configuration[J]. Photonics Research 2019,7: 1061–1065

    Article  CAS  Google Scholar 

  2. Yao C, Jia Z, Li Z, et al. High-power Mid-infrared Supercontinuum Laser Source Using Fluorotellurite Fiber[J]. Optica, 2018, 5: 1264–1270

    Article  CAS  Google Scholar 

  3. Guo Y, Liu X, Duan H, et al. Investigation on Local Structure Surrounding Erbium Cations in Fluoride Glasses with TeO2 Introduction for 2.7 µm Emission[J]. Journal of Alloys and Compounds, 2018, 753: 502–507

    Article  CAS  Google Scholar 

  4. Li T, Nedeljkovic M, Hattasan N, et al. Mashanovich, Ge-on-Si Modulators Operating at Mid-infrared Wavelengths up to 8 µm[J]. Photonics Research, 2019, 7: 828–836

    Article  CAS  Google Scholar 

  5. Zou Y, Chakravarty S, Chung CJ, et al. Mid-infrared Silicon Photonic Waveguides and Devices [Invited][J]. Photonics Research, 2018, 6: 254–276

    Article  CAS  Google Scholar 

  6. Qi F, Huang F, Wang T, et al. Highly Er3+-doped Fluorotellurite Glass for 1.5 µm Broadband Amplification and 2.7 µm Microchip Laser Applications[J]. Journal of Luminescence, 2018, 202: 132–135

    Article  CAS  Google Scholar 

  7. Li W, Wu J, Guan X, et al. Efficient Continuous-wave and Short-pulse Ho3+-doped Fluorozirconate Glass All-fiber Lasers Operating in the Visible Spectral Range[J]. Nanoscale, 2018, 10: 5272–5279

    Article  CAS  Google Scholar 

  8. Rezvani SA, Nomura Y, Ogawa K, et al. Generation and Characterization of Mid-infrared Supercontinuum in Polarization Maintained ZBLAN Fibers[J]. Opt. Express, 2019, 27: 24499–24511

    Article  CAS  Google Scholar 

  9. Almeida RM, Mackenzie JD. Vibrational Spectra and Structure of Fluorozirconate Glasses[J]. The Journal of Chemical Physics, 1981, 74: 5954–5961

    Article  CAS  Google Scholar 

  10. Kazuya O, Shibata T. Preparation and Characterization of ZrF4−BaF2−LaF3−NaF−AIF3 Glass Optical Fibers[J]. Journal of Lightwave Technology, 1984, 2(5): 602–606

    Article  Google Scholar 

  11. Torres A, Ganley J, Maji A, et al. Enhanced Processability of ZrF4−BaF2−LaF3−AlF3−NaF Glass in Microgravity[M]. Infrared Technology and Applications XXXIX, 2013

  12. Saad M, Poulain M. Glass Forming Ability Criterion[J]. Materials Science Forum, 1987, 19–20: 11–18

    Article  Google Scholar 

  13. Yasui I, Hagihara H, Inoue H. The Effect of Addition of Oxides on the Crystallization Behavior of Aluminum Fluoride-based Glasses[J]. Journal of Non-Crystalline Solids 1992, 140: 130–133

    Article  CAS  Google Scholar 

  14. Khalilev VD, Ebeling P, Vinogradova NU. The Influence of Oxide Doping on Some Optical Properties of Fluoroaluminate Glasses[J]. Journal of Non-Crystalline Solids 1996, 204: 196–201

    Article  CAS  Google Scholar 

  15. Tang B, Yuan X, Xue T, et al. Devitrification of TeO2-doped Fluoroaluminate Glass[J]. Journal of Materials Science & Technology, 2006, 22(4): 565–568

    Google Scholar 

  16. Marquesi AR, Delben JRJ, TDelben AAS. Glass Forming Ability and Thermal Stability of Oxyfluoride Glasses ZrO2−ZrF4−BaF2[J]. Journal of Thermal Analysis and Calorimetry, 2009, 96: 403–406

    Article  CAS  Google Scholar 

  17. Santos FA, Delben JRJ, Delben AAST, et al. Thermal Stability and Crystallization Behavior of TiO2 Doped ZBLAN Glasses[J]. Journal of Non-Crystalline Solids, 2011, 357: 2907–2910

    Article  CAS  Google Scholar 

  18. Wang F, Tian Y, Jing X, et al. Effect of TeO2 Addition on Thermal Stabilities and 2.7 µm Emission Properties of Fluoroaluminate-tellurite Glass[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 165: 93–101

    Article  CAS  Google Scholar 

  19. Wang F, Tian Y, Cai M, et al. Glass Forming Ability and Enhanced 2.7 µm Emission of Erbium Ions in TeO2 Doped Fluoroaluminate Glass[J]. Optical Materials, 2015, 48: 133–138

    Article  CAS  Google Scholar 

  20. Goncharuk VK, Kavun VY, Slobodyuk AB, et al. Crystallization and Luminescence Properties of Eu3+-doped ZrF4−BaF2−NaPO3 Glass and Glass Ceramics[J]. Journal of Non-Crystalline Solids, 2018, 480: 61–69

    Article  CAS  Google Scholar 

  21. Akatsuka M, Shinozaki K, Nakauchi D, et al. Scintillator and Dosimeter Properties of Ce3+-Doped CaF2−AlF3−AlPO4 Glasses[J]. Optical Materials, 2019, 94: 86–91

    Article  CAS  Google Scholar 

  22. Lapp JC, Dumbaugh WH. Gallium Oxide Glasses[J]. Key Engineering Materials, 1994, 94–95:257–278

    Article  Google Scholar 

  23. Kokubo T, Inaka Y, Sakka S. Formation and Optical Properties of (R2O or R’O)−Nb2O5−Ga2O3 Glasses[J]. Journal of Non-Crystalline Solids, 1986, 81: 337–350

    Article  CAS  Google Scholar 

  24. Kokubo T, Inaka Y, Sakka S. Glass Formation and Optical Properties of Glasses in the System (R2O or R’O)−Ta2O5−Ga2O3[J]. Journal of Non-Crystalline Solids, 1986, 80: 518–526

    Article  CAS  Google Scholar 

  25. Skopak T, Serment B, Ledemi Y, et al. Structure-properties Relationship Study in Niobium Oxide Containing GaO3/2−LaO3/2−KO1/2 Gallate Glasses[J]. Materials Research Bulletin, 2019, 112: 124–131

    Article  CAS  Google Scholar 

  26. Goncharuk VK, Maslennikova IG, Kharchenko VI, et al. A Study of the Glass Formation and Crystallization in the Mixed Fluorozir-conate-phosphate Systems ZrF4−BaF2(SnF2)−NaPO3[J]. Journal of Non-Crystalline Solids, 2016, 431: 118–125

    Article  CAS  Google Scholar 

  27. Nascimento MLF, Souza LA, Ferreira EB, et al. Can Glass Stability Parameters Infer Glass Forming Ability[J]? Journal of Non-Crystalline Solids, 2005, 351: 3296–3308

    Article  CAS  Google Scholar 

  28. Mitachi S, Tick PA. Oxygen Effect on Fluoride Glass crystallization[J]. Materials Science Forum, 1991, 67–68: 169–180

    Article  Google Scholar 

  29. Huang F, Ma Y, Liu L, et al. Enhanced 2.7µm Emission of Er3+-doped Low Hydroxyl Fluoroaluminate-tellurite Glass[J]. Journal of Luminescence, 2015, 158: 81–85

    Article  CAS  Google Scholar 

  30. Lecoq A, Poulain M. Fluoride Glasses in the ZrF4−BaF2−YF3−AlF3 Quaternary System[J]. Journal of Non-Crystalline Solids, 1980, 41: 209–217

    Article  CAS  Google Scholar 

  31. Danh T, George S, Bernard B. Heavy Metal Fluoride Glasses and Fibers: A Review[J]. Journal of Lightwave Technology, 1984, 2: 566–586

    Article  Google Scholar 

  32. Zhu J, Jin H, Dong D, et al. Study on the Stability of GaF3-based Glasses by Differential Scanning Calorimetry[J]. Journal of the American Ceramic Society, 2001, 66(2): 479–487

    CAS  Google Scholar 

  33. Dumbaugh WH, Lapp JC. Heavy Metal Oxide Glasses[J]. Journal of the American Ceramic Society, 1992, 75: 2315–2326

    Article  CAS  Google Scholar 

  34. Zou Y, Wang Y, Han S, et al. Effect of Chloride on Spectrum Properties of Pr3+/Ho3+ Co-doped Fluorozirconate Glasses[J]. Journal of Rare Earths, 2019, 38

  35. Aasland S, Einarsrud MA, Grande T, et al. Spectroscopic Investigations of Fluorozirconate Glasses in the Ternary Systems ZrF4−BaF2−AF (A = Na, Li)[J]. The Journal of Physical Chemistry, 1996, 100: 5457–5463

    Article  CAS  Google Scholar 

  36. Efimov AM. The IR Spectra of Non-oxide Glasses of Various Types: Crucial Differences and Their Origin[J]. Journal of Non-Crystalline Solids, 1997, 213&214: 205–214

    Article  CAS  Google Scholar 

  37. Gnatieva LN, Surovtsev NV, Plotnichenko VG, et al. The Peculiarities of Fluoride Glass Structure. Spectroscopic Study[J]. Journal of Non-Crystalline Solids, 2007, 353: 1238–1242

    Article  CAS  Google Scholar 

  38. Ignatieva LN, Surovtsev NV, Merkulov EB, et al. Structure and Optical Properties of Glasses in Systems ZrF4−BiF3−BaF2-PbF2−LnF3[J]. Journal of Non-Crystalline Solids, 2012, 358: 3248–3254

    Article  CAS  Google Scholar 

  39. Kawamoto Y, Kanno R, Kobayshi T, Konishi A. Structural Study of ZrF4−BaF2−LnF3 Glasses (Ln=Y or Rare-earth Elements)[J]. Journal of Materials Science Letters, 1995, 14: 319–321

    Article  CAS  Google Scholar 

  40. Kawamoto Y, Kanno R, Kobayshi T. Structural Study of ZrF4−BaF2−LnF3 Glasses (Ln = Y or Rare-earth Elements)[J]. Journal of materials Science Letters, 1995, 14: 319–321

    Article  CAS  Google Scholar 

  41. Qin L, Shen ZX, Low BL, et al. Crystallization Study of Heavy Metal Fluoride Glasses ZBLAN by Raman Spectroscopy[J]. Journal of Raman Spectroscopy, 1997, 28: 495–499

    Article  CAS  Google Scholar 

  42. Wasylak J, Samek L. Structural Aspects of Fluorozirconate Glasses and Some of Their Properties[J]. Journal of Non-Crystalline Solids, 1991, 129: 137–144

    Article  CAS  Google Scholar 

  43. Ignatieva LN, Stremousova EA, Merkulov EB. Vibrational Spectroscopy Study of Fluorozirconate Glasses Containing tin Difluoride and Gallium Trifluoride[J]. Journal of Structural Chemistry, 2003, 44: 381–387

    Article  CAS  Google Scholar 

  44. Wang Y, Zu C, He K, et al. Effect of Ga2O3 on Structure and Properties of Calcium Aluminate Glasses[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31: 961–964

    Article  CAS  Google Scholar 

  45. Mcmillan P, Piriou B. Raman Spectroscopy of Calcium Aluminate Glasses and Crystals[J]. Journal of Non-Crystalline Solids, 1983, 55: 221–242

    Article  CAS  Google Scholar 

  46. Daniel I, McMillan PF, Gillet P, et al. Raman Spectroscopic Study of Structural Changes in Calcium Aluminate (CaAl2O4) Glass at High Pressure and Temperature[J]. Chemical Geology, 1996, 128: 0–15

    Article  CAS  Google Scholar 

  47. Watanabe Y, Masuno A, Inoue H, et al. Influence of Modifier Cations on the Local Environment of Aluminum in La2O3−Al2O3 and Y2O3−Al2O3 Binary Glasses[J]. Phys. Chem. Chem. Phys., 2020, 22: 19592–19599

    Article  CAS  Google Scholar 

  48. Konishi A, Izumi H, Kanno R, et al. Physicochemical Properties of ZrF4−BaF2−LnF3 Glasses (Ln=Y or Rare-earth Elements)[J]. Journal of Materials Science, 1994, 29: 1584–1588

    Article  CAS  Google Scholar 

Download references

Funding

Funded by the Natural Science Foundation of Shanghai (No. 19YF1453300) and the National Natural Science Foundation of China (Nos. 52072122, 51872092, and 52002385)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiacheng Li  (李家成) or Huidan Zeng  (曾惠丹).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Li, J., Zhang, L. et al. Effect of Ga2O3-doping on Properties and Structure of ZBLAN Glass. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 564–569 (2022). https://doi.org/10.1007/s11595-022-2567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2567-2

Key words

Navigation