Skip to main content

Advertisement

Log in

The Effect of Nd3+ Concentration on Upconversion Luminescence in Yb3+/Tm3+/Nd3+ Tripledoped β-NaGdF4 Nanocrystals

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Nd3+-doped NaGdF4: Yb, Tm nanocrystals were synthesized by an improved high-temperature thermal decomposition method, and the effects of doping concentrations on the crystal structure, phase composition, and upconverted fluorescence intensity were also investigated. The results reveal that the introduction of Nd3+ ions does not cause the transformation of the crystal phase, but induce the change of the unit cell parameters. Meanwhile, the fluorescence intensity of the synthesized nanocrystals when co-doped with 3 mol% Nd3+ is the strongest under the excitation of 980 nm laser, which is 3.9 times that of the Nd3+-free doped nanoparticles, and the average size is 62.9 nm. And it is located in the blue area of the CIE coordinate diagram, and the corresponding color purity is 91.81% under the same experimental conditions. The resulting nanocrystals show the potential as excellent fluorescence labeling and in vivo imaging probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu F, Zhao Y, Hu M, et al. Lanthanide-doped Core-Shell Nanoparticles as a Multimodality Platform for Imaging and Photodynamic Therapy [J]. Chem. Commun. (Camb), 2018, 54(68): 9525–9528

    Article  CAS  Google Scholar 

  2. Wen S, Zhou J, Zheng K, et al. Advances in Highly Doped Upconversion Nanoparticles[J]. Nat. Commun., 2018, 9(1): 2415

    Article  Google Scholar 

  3. Chen B, Wang F. Emerging Frontiers of Upconversion Nanoparticles [J]. Trends in Chemistry, 2020, 2(5): 427–439

    Article  Google Scholar 

  4. Demina P A, Sholina N V, Akasov R A, et al. A Versatile Platform for Bioimaging Based on Colonic Acid-Decorated Upconversion Nanoparticles[J]. Biomater. Sci., 2020, 8(16): 4570–4580

    Article  CAS  Google Scholar 

  5. Du P, Huang X, Yu J S. Yb3+-Concentration Dependent Upconversion Luminescence and Temperature Sensing Behavior in Yb3+/Er3+ Co-doped Gd2MoO6 Nanocrystals Prepared by a Facile Citric-Assisted Sol-Gel Method[J]. Inorganic Chemistry Frontiers, 2017, 4(12): 1987–1995

    Article  CAS  Google Scholar 

  6. Wang J, Wei T, Li X, et al. Near-Infrared-Light-Mediated Imaging of Latent Fingerprints Based on Molecular Recognition[J]. Angew Chem. Int. Ed. Engl., 2014, 53(6): 1616–1620

    Article  CAS  Google Scholar 

  7. Ye J, Jiang J, Zhou Z, et al. Near-Infrared Light and Upconversion Nanoparticle Defined Nitric Oxide-Based Osteoporosis Targeting Therapy[J]. ACS Nano, 2021: 13692–13702

  8. He M, Pang X, Liu X, et al. Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide Perovskite Solar Cells[J]. Angew Chem. Int. Ed. Engl., 2016, 55(13): 4280–4284

    Article  CAS  Google Scholar 

  9. Zhang C, Li X, Liu M, et al. Dual-Wavelength Stimuli and Green Emission Response in Lanthanide Doped Nanoparticles for Anti-Counterfeiting[J]. Journal of Alloys and Compounds, 2020, 836: 155487

    Article  CAS  Google Scholar 

  10. Ya-Wen Zhang, Rui Si, Li-Ping You, et al. Single-Crystalline and Monodisperse LaF3 Triangular Nanoplates from a Single-Source Precursor[J]. Journal of the American Chemical Society, 2005, 127(10): 3260–3261

    Article  Google Scholar 

  11. Bednarkiewicz A, Wawrzynczyk D, Nyk M, et al. Synthesis and Spectral Properties of Colloidal Nd3+ Doped NaYF4 Nanocrystals[J]. Optical Materials, 2011, 33(10): 1481–1486

    Article  CAS  Google Scholar 

  12. Jiao M, Jing L, Liu C, et al. Differently Sized Magnetic/Upconversion Luminescent NaGdF4:Yb,Er Nanocrystals: Flow Synthesis and Solvent Effects[J]. Chem. Commun. (Camb), 2016, 52(34): 5872–5875

    Article  CAS  Google Scholar 

  13. Zhu Q, Sun T, Chung M N, et al. Yb(3+)-Sensitized Upconversion and Downshifting Luminescence in Nd(3+) Ions through Energy Migration [J]. Dalton. Trans., 2018, 47(26): 8581–8584

    Article  CAS  Google Scholar 

  14. Han S, Deng R, Xie X, et al. Enhancing Luminescence in Lanthanide-Doped Upconversion Nanoparticles[J]. Angew Chem. Int. Ed. Engl., 2014, 53(44): 11702–11715

    Article  CAS  Google Scholar 

  15. Ren Y, He S, Huttad L, et al. An NIR-II/MR Dual Modal Nanoprobe for Liver Cancer Imaging[J]. Nanoscale, 2020, 12(21): 11510–11517

    Article  CAS  Google Scholar 

  16. Okubo K, Takeda R, Murayama S, et al. Size-Controlled Bimodal in Vivo Nanoprobes as Near-Infrared Phosphors and Positive Contrast Agents for Magnetic Resonance Imaging[J]. Sci. Technol. Adv. Mater., 2021, 22(1): 160–172

    Article  CAS  Google Scholar 

  17. Lyu L, Cheong H, Ai X, et al. Near-Infrared Light-Mediated Rare-Earth Nanocrystals: Recent Advances in Improving Photon Conversion and Alleviating the Thermal Effect[J]. Npg Asia Materials, 2018, 10: 685–702

    Article  Google Scholar 

  18. Zhao C, Kong X, Liu X, et al. Li+ Ion Doping: an Approach for Improving the Crystallinity and Upconversion Emissions of NaYF4:Yb3+, Tm3+ Nanoparticles[J]. Nanoscale, 2013, 5(17): 8084–8089

    Article  CAS  Google Scholar 

  19. Zhao S, Xia D, Zhao R, et al. Tuning the Morphology, Luminescence and Magnetic Properties of Hexagonal-Phase NaGdF4: Yb, Er Nanocrystals via Altering the Addition Sequence of the Precursors[J]. Nanotechnology, 2017, 28(1): 015601

    Article  Google Scholar 

  20. Li J, Jia Y, Xu Y, et al. In Situ Epitaxial Growth of GdF3 on NaGdF4: Yb, Er Nanoparticles[J]. Inorganic Chemistry Frontiers, 2017, 4(12): 2119–2125

    Article  CAS  Google Scholar 

  21. Su Q, Han S, Xie X, et al. The Effect of Surface Coating on Energy Migration-Mediated Upconversion[J]. J. Am. Chem. Soc., 2012, 134(51): 20849–20857

    Article  CAS  Google Scholar 

  22. Zhang X, Zhao Z, Zhang X, et al. Magnetic and Optical Properties of NaGdF4:Nd3+, Yb3+, Tm3+ Nanocrystals with Upconversion/Downconversion Luminescence from Visible to the Near-Infrared Second Window[J]. Nano Research, 2014, 8(2): 636–648

    Article  Google Scholar 

  23. Chen G, Agren H, Ohulchanskyy T Y, et al. Light Upconverting Core-Shell Nanostructures: Nanophotonic Control for Emerging Applications[J]. Chem. Soc. Rev., 2015, 44(6): 1680–1713

    Article  CAS  Google Scholar 

  24. Marconi Da Silva M D Linhares H, Felipe Henriques Librantz A, Gomes L, et al. Energy Transfer Rates and Population Inversion Investigation of 1G4 And 1D2 Excited States of Tm3+ in Yb:Tm:Nd:KY3F10 Crystals[J]. Journal of Applied Physics, 2011, 109(8): 44

    Google Scholar 

  25. Du P, Wang L, Yu J S. Luminescence Properties and Energy Eransfer Behavior of Single-Component NaY(WO4)2:Tm3+/Dy3+/Eu3+ Phosphors for Ultraviolet-Excited White Light-Emitting Diodes[J]. Journal of Alloys and Compounds, 2016, 673: 426–432

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youfa Wang  (王友法) or Wei Wang  (王伟).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Gan, L., Wang, Y. et al. The Effect of Nd3+ Concentration on Upconversion Luminescence in Yb3+/Tm3+/Nd3+ Tripledoped β-NaGdF4 Nanocrystals. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 393–398 (2022). https://doi.org/10.1007/s11595-022-2544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2544-9

Key words

Navigation