Skip to main content
Log in

A Duplex Grain Structure of Dense (K, Na)NbO3 Ceramics Constructed by Using Microcrystalline as Seed

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A new raw material was developed for the preparation of dense (K, Na)NbO3 (KNN) ceramics. In the absence of dopants, two kinds of KNN powder, calcined and microcrystalline powder, were used as matrix and seed to construct a duplex grain structure. The former was synthesized by the traditional solid phase reaction method and the latter by molten salt method. The effects of microcrystalline powder content on sintering behavior, microstructure and electric properties were investigated. It was found that appropriate microcrystalline powder content (x=0.4) promoted the grain growth and the gas diffusion, which resulted in a denser duplex grain structure and obtained a wide sintering temperature range. This work gives a basic raw material system for the development of high performance KNN ceramics. In addition, it also provides a new way to prepare dense ceramics by the design of a duplex structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Panda P K, Sahoo B. PZT to Lead Free Piezo Ceramics: A Review[J]. Ferroelectrics, 2015, 474: 128–143

    Article  CAS  Google Scholar 

  2. Tao H, Wu H J, Liu Y, et al. Ultrahigh Performance in Lead-free Piezoceramics Utilizing a Relaxor Slush Polar State with Multiphase Coexistence[J]. J. Am. Chem. Soc., 2019, 141: 13987–13994

    Article  CAS  Google Scholar 

  3. Saito Y, Takao H, Tani T, et al. Lead-free Piezoceramics[J]. Nature, 2004, 432: 84

    Article  CAS  Google Scholar 

  4. Wang K, Yao F Z, Jo W, et al. Temperature-insensitive (K,Na)NbO3-based Lead-free Piezoactuator Ceramics[J]. Adv. Funct. Mater, 2013, 23: 4079–4086

    Article  CAS  Google Scholar 

  5. Xu K, Li J, Lv X, et al. Superior Piezoelectric Properties in Potassium-sodium Niobate Lead-free Ceramics[J]. Adv. Mater., 2016, 28: 8519–8523

    Article  CAS  Google Scholar 

  6. Li P, Zhai J W, Shen B, et al. Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO3-based Lead-free Ceramics[J]. Adv. Mater., 2018, 30: 1705171

    Article  Google Scholar 

  7. Patricia P G, Norbert S, Eckhard Q. Suppression of Abnormal Grain Growth in K0.5Na0.5NbO3: Phase Transitions and Compatibility[J]. Sci. Rep., 2019, 9: 19775

    Article  Google Scholar 

  8. Zhen Y H, Li J F. Abnormal Grain Growth and New Core-shell Structure in (K,Na)NbO3-based Lead-free Piezoelectric Ceramics[J]. J. Am. Ceram. Soc., 2007, 90: 3496–3502

    Article  CAS  Google Scholar 

  9. Chen J C, Wu W, Su S, et al. Phase Structure, Microstructure and Electrical Properties of KxNa(1−x)NbO3 Piezoelectric Ceramics with Different K/Na Ratio[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(1): 30–34

    Article  CAS  Google Scholar 

  10. Mahdi R, Al-Bahnam N J, Ajeel M A, et al. High-performance (K,Na) NbO3-based Binary Lead-free Piezoelectric Ceramics Modified with Acceptor Metal Oxide[J]. Ceram. Inter., 2020, 46: 21762–21770

    Article  CAS  Google Scholar 

  11. Wang H, Zhai X, Xu J W, et al. Effect of Sintering Time on Structure and Properties in CuO-doping KNN-LS-BF Piezoelectric Ceramics[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(2): 308–311

    Article  CAS  Google Scholar 

  12. Pinho R, Tkach A, Zlotnik S, et al. Spark Plasma Texturing: a Strategy to Enhance the Electro-mechanical Properties of Lead-free Potassium Sodium Niobate Ceramics[J]. Appl. Mater. Today, 2020, 19: 100566

    Article  Google Scholar 

  13. Acker J, Kungl H, Schierholz R, et al. Microstructure of Sodium-potassium Niobate Ceramics Sintered under High Alkaline Vapor Pressure Atmosphere[J]. J. Eur. Ceram. Soc., 2014, 34: 4213–4221

    Article  CAS  Google Scholar 

  14. Malic B, Koruza J, Hrescak J, et al. Sintering of Lead-free Piezoelectric Sodium Potassium Niobate Ceramics[J]. Materials, 2015, 8: 8117–8146

    Article  CAS  Google Scholar 

  15. Hao J G, Li W, Zhai J W, et al. Progress in High-strain Perovskite Piezoelectric Ceramics[J]. Mat. Sci. Eng. R., 2019, 135: 1–57

    Article  Google Scholar 

  16. Zheng T, Wu J G, Xiao D Q, et al. Recent Development in Lead-free Perovskite Piezoelectric Bulk Materials[J]. Prog. Mater. Sci., 2018, 98: 552–624

    Article  CAS  Google Scholar 

  17. Wang K, Li J F. (K, Na)NbO3-based Lead-free Piezoceramics: Phase Transition, Sintering and Property Enhancement[J]. J. Adv. Ceram., 2012, 1: 24–37

    Article  CAS  Google Scholar 

  18. Yang Z T, Gao F, Du H L, et al. Grain Size Engineered Lead-free Ceramics with both Large Energy Storage Density and Ultrahigh Mechanical Properties[J]. Nano Energy, 2019, 58: 768–777

    Article  CAS  Google Scholar 

  19. Zhang J L, Sun X, Su W B, et al. Superior Piezoelectricity and Rhombohedral-orthorhombic-tetragonal Phase Coexistence of (1−x)(K,Na) (Nb,Sb)O3x(Bi,Na)HfO3 Ceramics[J]. Scripta Mater., 2020, 176: 108–111

    Article  CAS  Google Scholar 

  20. Liu X F, Fechler N, Antonietti M. Salt Melt Synthesis of Ceramics, Semiconductors and Carbon Nanostructures[J]. Chem. Soc. Rev., 2013, 42: 8237–8265

    Article  CAS  Google Scholar 

  21. Sui W M, Yu H Y, Luan S J, et al. Preparation and Characterization of Bi4Ti3O12 Platelets by a Novel Low-temperature Molten Salt System[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2009, 24(2): 241–244

    Article  CAS  Google Scholar 

  22. Lv R, Liu L L, Wang Y, et al. A-site Cation and Morphology Control of KSr2Nb5O15 Microcrystalline by a Modified Molten Salt Method[J]. Adv. Powder Technol., 2020, 31: 3256–3266

    Article  CAS  Google Scholar 

  23. Liu L L, Lv R, Guo Z Z, et al. Fabrication of Columnar NaNbO3-based Particles through Topochemical Microcrystal Conversion[J]. Electron. Mater. Lett., 2020, 16: 55–60

    Article  CAS  Google Scholar 

  24. Liu L L, Zhang Y M, Hou Z P, et al. Formation Process of a Duplex Structure in KSr2Nb5O15 Ferroelectric Ceramics[J]. J. Mater. Sci.:Mater. El., 2016, 27: 11055–11063

    CAS  Google Scholar 

  25. Liu L L, Gao F, Hu G X, et al. Effect of Excess Nb2O5 on the Growth Behavior of KSr2Nb5O15 Particles by Molten Salt Synthesis[J]. Powder Technol., 2013, 235: 806–813

    Article  CAS  Google Scholar 

  26. Su Y L, Chen X M, Yu Z D, et al. Comparative Study on Microstructure and Electrical Properties of (K0.5Na0.5)NbO3 Lead-free Ceramics Prepared via Two Different Sintering Methods[J]. J. Mater. Sci., 2017, 52: 2934–2943

    Article  CAS  Google Scholar 

  27. Hu C Z, Zhu Q H, Sun Z, et al. Dielectric Properties of Unfilled Tetragonal Tungsten Bronze Ba4PrFe0.5Nb9.5O30 Ceramics[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2017, 32(4): 904–909

    Article  CAS  Google Scholar 

  28. Liao Y, Wang D M, Wang H, et al. Modulation of Defects and Electrical Behaviors of Cu-Doped KNN Ceramics by Fluorine-Oxygen Substitution[J]. Dalton T., 2020, 49: 1311–1318

    Article  CAS  Google Scholar 

  29. Ren XB, Otsuka K. Universal Symmetry Property of Point Defects in Crystals[J]. Phys. Rev. Lett., 2000, 85: 1016–1019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangliang Liu  (刘亮亮).

Additional information

Funded by the National Natural Science Foundation of China (No. 51502191) and Fundamental Research Program of Shanxi Province (No. 202103021224080)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Jiang, X., Rui, L. et al. A Duplex Grain Structure of Dense (K, Na)NbO3 Ceramics Constructed by Using Microcrystalline as Seed. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 385–392 (2022). https://doi.org/10.1007/s11595-022-2543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2543-x

Key words

Navigation