Skip to main content
Log in

Preparation and Characterization of Alumina-coated Hollow Quartz Fiber Reinforced Al2O3-SiO2 Aerogel Composite

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Al2O3-SiO2 sols were synthesized by using aluminum chloride hex hydrate and tetraethoxysilane (TEOS) as precursors, deionized water and ethanol mixture as the solvent, and propylene oxide as the coagulant aids. Alumina coatings were prepared on the surfaces of hollow quartz filament fiber, then a new lightweight and thermal insulating material were successfully prepared by impregnating Al2O3-SiO2 sol into a needle fabric made by coated hollow quartz filament fiber. The coated quartz fiber, aerogels and composites were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), energy dispersive spectroscopy(EDS), nitrogen adsorption-desorption(BET), scanning electron microscopy(SEM), transmission electron microscopy(TEM), and tensile tests. The effects of different fiber and calcination temperatures on the microstructures and properties of Al2O3-SiO2 composite aerogels were investigated. The test results indicate that the mechanical properties of the aerogels are improved by introducing quartz filament fabrics and the introduction of alumina coating improves the thermal stability of the material. Compared to other fibers, Al2O3-coated hollow quartz fiber has significant advantages as reinforcement for composite, and their tensile strength is well retained after high temperature heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsirlin A M, Shcherbakova G I, Florina E K, et al. Nano-Structured Metal-Containing Polymer Precursors for High Temperature Non-Oxide Ceramics and Ceramic Fibers—Syntheses, Pyrolyses and Properties[J]. Eur. Ceram. Soc., 2002, 22(14): 2577–2585

    Article  CAS  Google Scholar 

  2. Levine S R, Opila E J, Halbig M C, et al. Evaluation of Ultra-High Temperature Ceramics Foraeropropulsion Use[J]. Eur. Ceram. Soc., 2001, 22(14–15): 2757–2767

    Google Scholar 

  3. Feng J Z, Zhang C R, Feng J, et al. Carbon Aerogel Composites Prepared by Ambient Drying and Using Oxidized Polyacrylonitrile Fibers as Reinforcements[J]. Appl. Mater. Interfaces, 2011, 3(12): 4796–4803

    Article  CAS  Google Scholar 

  4. Lu T, Li Q, Chen W, et al. Composite Aaerogels Based on Dialdehyde Nanocellulose and Collagen for Potential Applications as Wound Dressing and Tissue Engineering Scaffold[J]. Compos. Sci., Technol., 2014, 94: 132–138

    Article  CAS  Google Scholar 

  5. Jian H, Li X, Dong S, et al. Ultra-Low Thermal Conductivity and High Strength of Aerogels/Fibrous Ceramic Composites[J]. J. Eur. Ceram. Soc., 2016, 36(6): 1487–1493

    Article  Google Scholar 

  6. Wu L, Huang Y, Wang Z, et al. Fabrication of Hydrophobic Alumina Aerogel Monoliths by Surface Modification and Ambient Pressure Drying[J]. Appl. Surf. Sci., 2010, 256(20): 5973–5977

    Article  CAS  Google Scholar 

  7. Poco J F, Satcher Jr J H, Hrubesh L W. Synthesis of High Porosity, Monolithic Alumina Aerogels[J]. J. Non-Cryst. Solids., 2001, 285: 57–63

    Article  CAS  Google Scholar 

  8. Aravind P R, Mukundan P, Pillai P K, et al. Mesoporous Silica-Alumina Aerogels with High Thermal Pore Stability Through Hybrid Sol-Gel Route Followed by Subcritical Drying[J]. Microporous Mesoporous Mater., 2006, 96(1–3): 14–20

    Article  CAS  Google Scholar 

  9. Faure, Benjamin, Alphonse, et al. Thermal Stabilization of Alumina Modified by Lanthanum[J]. Microporous Mesoporous Mater, 2014, 196: 191–198

    Article  Google Scholar 

  10. Church J S, Cant N W, Trimm D L. Stabilisation of Aluminas by Rare Earth and Alkaline Earth Ions[J]. Appl. Catal. A-Gen., 1993, 101(1): 105–116

    Article  CAS  Google Scholar 

  11. Al-Yassir N, Mao R. Thermal Stability of Alumina Aerogel Doped with Yttrium Oxide, Used as a Catalyst Support for the Thermocatalytic Cracking (TCC) Process: An Investigation of Its Textural and Structural Properties[J]. Appl. Catal. A-Gen., 2007, 317(2): 275–283

    Article  CAS  Google Scholar 

  12. Horiuchi T, Osaki T, Sugiyama T, et al. Maintenance of Large Surface Area of Alumina Heated at Elevated Temperatures Above 1 300 DegreeC by Preparing Silica-Containing Pseudoboehmite Aerogel[J]. J. Non-Cryst. Solids, 2001, 291(3): 187–198

    Article  CAS  Google Scholar 

  13. André Douy. Crystallisation of Amorphous Spray-Dried Precursors in the Al2O3-SiO2 System[J]. J. Eur. Ceram. Soc., 2006, 26(8): 1447–1454

    Article  CAS  Google Scholar 

  14. Zu G, Shen J, Zou L, et al. Nanoengineering Super Heat-Resistant, Strong Alumina Aerogels[J]. Chem. Mater., 2013, 25(23): 4757–4764

    Article  CAS  Google Scholar 

  15. Wu X, Shao G, Shen X, et al. Novel Al2O3-SiO2 Composite Aerogels with High Specific Surface Area at Elevated Temperatures with Different Alumina/Silica Molar Ratios Prepared by a Non-Alkoxide Sol-Gel Method[J]. RSC Adv., 2016, 6(7): 5611–5620

    Article  CAS  Google Scholar 

  16. Yang X, Jing W, Shi D, et al. Comparative Investigation of Creep Behavior of Ceramic Fiber-Reinforced Alumina and Silica Aerogel[J]. Mater. Sci. Eng., A., 2014, 609(15):125–130

    Article  CAS  Google Scholar 

  17. Lyu S Q, Yang X G, Shi D Q, et al. Effect of High Temperature on Compression Property and Deformation Recovery of Ceramic Fiber Reinforced Silica Aerogel Composites[J]. Sci. China Technol. Sci., 2017, 60: 1681–1691

    Article  CAS  Google Scholar 

  18. Xu L, Jiang Y, Feng J, et al. Infrared-Opacified Al2O3-SiO2 Aerogel Composites Reinforced by SiC-Coated Mullite Fibers for Thermal Insulations[J]. Ceram. Int., 2015, 41(1): 437–442

    Article  Google Scholar 

  19. Lu H R, Wang C A. Fabrication and Characterization of Ceramic Coatings with Alumina-Silica Sol-Incorporated α-Alumina Powder Coated on Woven Quartz Fiber Fabrics[J]. Ceram. Int., 2013, 39(6): 6041–6050

    Article  CAS  Google Scholar 

  20. Mochida I, Yoon S H, Takano N, et al. Microstructure of Mesophase Pitch-Based Carbon Fiber and Its Control[J]. Carbon., 1996, 34(8): 941–956

    Article  CAS  Google Scholar 

  21. Wang L, Huang Y D, Liu L. High Temperature Mechanical Property of Al2O3 Coated Quartz-Fiber Reinforced Methyl Silicon Resin Composites[J]. Key Eng. Mater., 2007, 351: 135–141

    Article  CAS  Google Scholar 

  22. Munhoz A H, Novickis R W, Fa Ldini S B, et al. Development of Pseudoboehmites for Nanosystems to Release Acyclovir[J]. Adv. Sci. Technol., 2010, 76: 184–189

    Article  CAS  Google Scholar 

  23. Mizushima Y, Hori M. Properties of Alumina Aerogels Prepared under Different Conditions[J]. J. Non-Cryst. Solids., 1994, 167(1–2): 1–8

    Article  CAS  Google Scholar 

  24. Keysar S, Shter G E, Hazan Y D, et al. Heat Treatment of Alumina Aerogels[J]. Chem. Mater., 1997, 9(11): 2464–2467

    Article  CAS  Google Scholar 

  25. Wu X, Shao G, Cui S, et al. Synthesis of a Novel Al2O3-SiO2 Composite Aerogel with High Specific Surface Area at Elevated Temperatures Using Inexpensive Inorganic Salt of Aluminum[J]. Ceram. Int., 2016, 42(1): 874–882

    Article  CAS  Google Scholar 

  26. Yi X B, Zhang L L, Wang F Y, et al. Mechanically Reinforced Composite Aerogel Blocks by Self-Growing Nanofibers[J]. RSC Adv., 2014, 4: 48601–48605

    Article  CAS  Google Scholar 

  27. Wang T, Zhang Z, Dai C, et al. Amorphous Silicon and Silicates-Stabilized ZrO2 Hollow Fiber with Low Thermal Conductivity and High Phase Stability Derived From a Cogon Template[J]. Ceram. Int., 2019, 45(6): 7120–7126

    Article  CAS  Google Scholar 

  28. Lee S C. Enhanced Thermal Performance of Fibrous Insulation Containing Nonhomogeneous Fibers[J]. J. Quant. Spectrosc. Radiat. Transfer., 1993, 50(2): 199–209

    Article  CAS  Google Scholar 

  29. Kling S, Czigany T. A Comparative Analysis of Hollow and Solid Glass Fibers[J]. Text. Res. J., 2015, 83(16): 1764–1772

    Article  Google Scholar 

  30. Gu X, Trusty P A, Butler E G, et al. Deposition of Zirconia Sols on Woven Fibre Preforms Using a Dip-Coating Technique[J]. J. Eur. Ceram. Soc., 2000, 20(6): 675–684

    Article  CAS  Google Scholar 

  31. Chen H, Sui X, Zhou C, et al. Preparation and Characterization of Mullite Fiber-Reinforced Al2O3-SiO2 Aerogel Composites[J]. Key Eng. Mater., 2016, 697: 360–363

    Article  Google Scholar 

  32. Wen S, Ren H, Zhu J, et al. Fabrication of Al2O3 Aerogel-SiO2 Fiber Composite with Enhanced Thermal Insulation and High Heat Resistance[J]. J. Porous MAT., 2018, 26(4): 1–8

    Google Scholar 

  33. Wu H, Chen Y, Chen Q, et al. Synthesis of Flexible Aerogel Composites Reinforced with Electrospun Nanofibers and Microparticles for Thermal Insulation[J]. J. Nanomater., 2013: 375093

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizhen Zhu  (朱时珍).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, J. & Zhu, S. Preparation and Characterization of Alumina-coated Hollow Quartz Fiber Reinforced Al2O3-SiO2 Aerogel Composite. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 324–330 (2022). https://doi.org/10.1007/s11595-022-2534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2534-y

Key words

Navigation