Skip to main content

Advertisement

Log in

Enhanced Cathode/Electrolyte Interface in Solid-state Li-metal Battery based on Garnet-type Electrolyte

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Li/garnet/LiFePO4 solid-state battery was fabricated. The cathode contains LiFePO4, Ketjen black, poly(vinylidene fluoride):LiTFSI polymer as active material, electric conductor and Li-ion conducting binder, respectively. Polyvinylpyrrolidone was added into the cathode to improve cathode/electrolyte interfacial performance. When combined with polyvinylpyrrolidone additive, poly(vinylidene fluoride):polyvinylpyrrol idone:LiTFSI blend forms, and the cathode/electrolyte interfacial resistance reduces from 10.7 kΩ to 3.2 kΩ. The Li/garnet/LiFePO4 solid-state battery shows 80% capacity retention after 100 cycles at 30 °C and 0.05 C. This study offers a general strategy to improve cathode/electrolyte interfacial performance and may enable the practical application of solid-state Li-metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etacheri V, Marom R, Elazari R, et al. Challenges in the Development of Advanced Li-Ion Batteries: A Review[J]. Energy & Environmental Science, 2011, 4: 3243–3262

    Article  CAS  Google Scholar 

  2. Nitta N, Wu F, Lee JT, G. et al. Li-Ion Battery Materials: Present and Future[J]. Materials Today, 2015, 18: 252–264

    Article  CAS  Google Scholar 

  3. Xu K. Electrolytes and Interphases in Li-Ion Batteries and Beyond[J]. Chemical Reviews, 2014, 114: 11503–11618

    Article  CAS  Google Scholar 

  4. Li Z, Huang J, Yann Liaw B, et al. A Review of Lithium Deposition in Lithium-Ion and Lithium Metal Secondary Batteries[J]. Journal of Power Sources, 2014, 254: 168–182

    Article  CAS  Google Scholar 

  5. Yang L, Ravdel B, Lucht BL. Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries[J]. Electrochemical and Solid-State Letters, 2010, 13: A95

    Article  CAS  Google Scholar 

  6. Choi NS, Han JG, Ha SY, et al. Recent Advances in the Electrolytes for Interfacial Stability of High-Voltage Cathodes in Lithium-Ion Batteries[J]. RSC Advances, 2015, 5: 2732–2748

    Article  CAS  Google Scholar 

  7. Thangadurai V, Narayanan S, Pinzaru D. Garnet-Type Solid-State Fast Li ion Conductors for Li Batteries: Critical Review[J]. Chemical Society Reviews, 2014, 43: 4714–4727

    Article  CAS  Google Scholar 

  8. Kato Y, Kawamoto K, Kanno R, et al. Discharge Performance of All-Solid-State Battery Using a Lithium Superionic Conductor Li10GeP2S12J]. Electrochemistry, 2012, 80: 749–751

    Article  CAS  Google Scholar 

  9. Kato Y, Hori S, Saito T, et al. High-Power All-Solid-State Batteries using Sulfide Superionic Conductors[J]. Nature Energy, 2016, 1: 16030

    Article  CAS  Google Scholar 

  10. Deiseroth HJ, Kong ST, Eckert H, et al. Li6PS5X: A Class of Crystalline Li-Rich Solids with an Unusually High Li+ Mobility[J]. Angewandte Chemie International Edition, 2008, 47: 755–758

    Article  CAS  Google Scholar 

  11. Ohnishi T, Takada K. Synthesis and Orientation Control of Li-Ion Conducting Epitaxial Li0.33La0.56TiO3 Solid Electrolyte Thin Films by Pulsed Laser Deposition[J]. Solid State Ionics, 2012, 228: 80–82

    Article  CAS  Google Scholar 

  12. Choi HJ, Kim SY, Gong MK, et al. Tailored Perovskite Li0.33La0.56TiO3 via an Adipic Acid-Assisted Solution Process: A Promising Solid Electrolyte for Lithium Batteries[J]. Journal of Alloys and Compounds, 2017, 729: 338–343

    Article  CAS  Google Scholar 

  13. Arbi K, Bucheli W, Jiménez R, et al. High Lithium Ion Conducting Solid Electrolytes Based on NASICON Li1+xAlxM2−x(PO4)3 Materials (M=Ti, Ge and 0⩽x⩽0.5)[J]. Journal of the European Ceramic Society, 2015, 35: 1477–1484

    Article  CAS  Google Scholar 

  14. Murugan R, Thangadurai V, Weppner W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46: 7778–7781

    Article  CAS  Google Scholar 

  15. Han FD, Zhu YZ, He XF, et al. Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes[J]. Advanced Engineering Materials, 2016, 6: 1501590

    Google Scholar 

  16. Han X, Gong Y, Fu K, et al. Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries[J]. Nature Materials, 2017, 16: 572–579

    Article  CAS  Google Scholar 

  17. Cheng L, Crumlin EJ, Chen W, et al. The Origin of High Electrolyte-Electrode Interfacial Resistances in Lithium Cells Containing Garnet Type Solid Electrolytes[J]. Physical Chemistry Chemical Physics, 2014, 16: 18294–18300

    Article  CAS  Google Scholar 

  18. Liu Y, He P, Zhou H. Rechargeable Solid-State Li-Air and Li-S Batteries: Materials, Construction, and Challenges[J]. Advanced Engineering Materials, 2018, 8: 1701602

    Google Scholar 

  19. Sudo R, Nakata Y, Ishiguro K, et al. Interface Behavior between Garnet-Type Lithium-Conducting Solid Electrolyte and Lithium Metal[J]. Solid State Ionics, 2014, 262: 151–154

    Article  CAS  Google Scholar 

  20. Sharafi A, Meyer HM, Nanda J, et al. Characterizing the Li-Li7La3Zr2 O12 Interface Stability and Kinetics as a Function of Temperature and Current Density[J]. Journal of Power Sources, 2016, 302: 135–139

    Article  CAS  Google Scholar 

  21. Fu K, Gong Y, Liu B, et al. Toward Garnet Electrolyte-Based Li Metal Batteries: An Ultrathin, Highly Effective, Artificial Solid-State Electrolyte/Metallic Li Interface[J]. Science Advances, 2017, 3: e1601659

    Article  Google Scholar 

  22. Luo W, Gong Y, Zhu Y, et al. Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte[J]. Journal of the American Chemical Society, 2016, 138: 12258–12262

    Article  CAS  Google Scholar 

  23. Luo W, Gong Y, Zhu Y, et al. Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer[J]. Advanced Materials, 2017, 29: 1606042

    Article  Google Scholar 

  24. Wang C, Gong Y, Liu B, et al. Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid State Electrolyte for Lithium Metal Anodes[J]. Nano Letters, 2017, 17: 565–571

    Article  CAS  Google Scholar 

  25. Du FM, Zhao N, Li YQ, et al. All Solid State Lithium Batteries Based on Lamellar Garnet-Type Ceramic Electrolytes[J]. Journal of Power Sources, 2015, 300: 24–28

    Article  CAS  Google Scholar 

  26. Du FM, Zhao N, Fang R, et al. Influence of Electronic Conducting Additives on Cycle Performance of Garnet-based Solid Lithium Batteries[J]. Journal of Inorganic Materials, 2018, 33: 462–468

    Article  Google Scholar 

  27. He MH, Cui ZH, Han F, et al. Construction of Conductive and Flexible Composite Cathodes for Room-Temperature Solid-State Lithium Batteries[J]. Journal of Alloys and Compounds, 2018, 762: 157–162

    Article  CAS  Google Scholar 

  28. Wang Z, Tang Z. Characterization of the Polymer Electrolyte Based on the Blend of Poly(Vinylidene Fluoride-co-hexafluoropropylene) and Poly(Vinyl Pyrrolidone) for Lithium Ion Battery[J]. Materials Chemistry and Physics, 2003, 82: 16–20

    Article  CAS  Google Scholar 

  29. Cao JH, Zhu BK, Xu YY. Structure and Ionic Conductivity of Porous Polymer Electrolytes Based on PVDF-HFP Copolymer Membranes[J]. Journal of Membrane Science, 2006, 281: 446–453

    Article  CAS  Google Scholar 

  30. Abdelrazek EM, Elashmawi IS, Labeeb S. Chitosan Filler Effects on the Experimental Characterization, Spectroscopic Investigation and Thermal Studies of PVA/PVP Blend Films[J]. Physica B: Condensed Matter, 2010, 405: 2021–2027

    Article  CAS  Google Scholar 

  31. Guo Z, Xu X, Xiang Y, et al. New Anhydrous Proton Exchange Membranes for High-Temperature Fuel Cells Based on PVDF-PVP Blended Polymers[J]. Journal of Materials Chemistry A, 2015, 3: 148–155

    Article  CAS  Google Scholar 

  32. Wang F, Li L, Yang X, et al. Influence of Additives in a PVDF-Based Solid Polymer Electrolyte on Conductivity and Li-Ion Battery Performance[J]. Sustainable Energy & Fuels, 2018, 2: 492–498

    Article  CAS  Google Scholar 

  33. Gao K, He M, Li Y, et al. Preparation of High-Density Garnet Thin Sheet Electrolytes for All-Solid-State Li-Metal Batteries by Tape-Casting Technique[J]. Journal of Alloys and Compounds, 2019, 791: 923–928

    Article  CAS  Google Scholar 

  34. Yu C, Ganapathy S, de Klerk NJ, et al. Unravelling Li-ion Transport from Pico-Seconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl — Li2S All Solid State Li-Ion Battery[J]. Journal of the American Chemical Society, 2016, 138: 11192–11201

    Article  CAS  Google Scholar 

Download references

Funding

Funded by the National Natural Science Foundation of China (Nos. 51772314, 51532002, 51771222 and 51702346), and the Natural Science Foundation of Shanghai City (17ZR1434600)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiqiu Li  (李忆秋 or Xiangxin Guo  (郭向欣).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Li, Y. & Guo, X. Enhanced Cathode/Electrolyte Interface in Solid-state Li-metal Battery based on Garnet-type Electrolyte. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 149–154 (2022). https://doi.org/10.1007/s11595-022-2511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2511-5

Key words

Navigation