Skip to main content
Log in

Effects of Shale and CaO Incorporation on Mechanical Properties and Autogenous Deformation of Early-age Concrete

  • Cementitious Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The pre-soaked shale employed as an internal curing agent and CaO employed as expansion agent were incorporated into concrete to investigate their effects on the mechanical properties and autogenous deformation of early-age concrete. We have conducted the relevant tests for setting time, mechanical properties, internal relative humidity and autogenous deformation of early-age concrete with shale or/and CaO incorporation. The results indicate that the set behavior is delayed by shale addition but is accelerated with CaO. The shale addition firstly enhances and subsequently decreases the strength, but CEA addition has a weakening effect. Additionally, shale or/and CaO incorporation deteriorates the elastic modulus. The shale and CaO incorporation significantly improve the internal relative humidity of concrete. The internal curing efficacy of shale could synergistically mitigate the autogenous shrinkage, that is, could enhance the expansion of CaO and then greatly reduce the contraction, which is significantly beneficial to impede the shrinkage-introduced cracks of early-age concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hou D, Zhang W, Sun M, et al. Modified Lucas-Washburn Function of Capillary Transport in the Calcium Silicate Hydrate Gel Pore: A Coarse-Grained Molecular Dynamics Study[J]. Cem. Concr. Res., 2020, 136: 106 166

    Article  Google Scholar 

  2. Zhao H T, Jiang K D, Hong B, et al. Experimental and Numerical Analysis on Coupled Hygro-Thermo-Chemo-Mechanical Effect in Early-Age Concrete[J]. ASCE J. Mater. Civ. Eng., 2021, 33(5): 04 021 064

    Article  CAS  Google Scholar 

  3. Zhang P, Gao Z, Wang J, et al. Properties of Fresh and Hardened Fly Ash/Slag Based Geopolymer Concrete: A Review[J]. J. Clean. Prod., 2020, 270: 122 389

    Article  CAS  Google Scholar 

  4. Zhao H T, Wu X, Huang Y Y, et al. Investigation of Moisture Transport in Cement-Based Materials Using Low-Field Nuclear Magnetic Resonance Imaging[J]. Magaz. Concr. Res., 2021, 73(5): 252–270

    Article  Google Scholar 

  5. Li W, Huang Z, Hu G, et al. Early-Age Shrinkage Development of Ultra-High-Performance Concrete Under Heat Curing Treatment[J]. Constr. Build. Mater., 2017, 131: 767–774

    Article  CAS  Google Scholar 

  6. Zhao H T, Jiang K D, Yang R, et al. Experimental and Theoretical Analysis on Coupled Effect of Hydration, Temperature and Humidity in Early-Age Cement-Based Materials[J]. Int. J. Heat. Mass. Transfer., 2020, 146: 118 784

    Article  Google Scholar 

  7. Wu S X, Huang D H, Lin F B, et al. Estimation of Cracking Risk of Concrete at Early Age Based on Thermal Stress Analysis[J]. J. Therm. Anal. Calorim., 2011, 105(1): 171–186

    Article  CAS  Google Scholar 

  8. Liu J P, Tian Q, Wang Y J, et al. Evaluation Method and Mitigation Strategies for Shrinkage Cracking of Modern Concrete[J]. Eng., 2021, 7: 348–357

    Article  Google Scholar 

  9. Zhao K, Qiao Y, Zhang P, et al. Experimental and Numerical Study on Chloride Transport in Cement Mortar During Drying Process[J]. Constr. Build. Mater., 2020, 258: 119 655

    Article  CAS  Google Scholar 

  10. Zhao H, Huang D H, Wang X, et al. Dynamic Elastic Modulus of Cement Paste at Early Age Based on Nondestructive Test and Multiscale Prediction Model[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2014, 29: 321–328

    Article  CAS  Google Scholar 

  11. Zhang S Z, Tian Q, Lu A Q. Influence of Cao-Based Expansive Agent on the Deformation Behavior of High Performance Concrete[J]. Appl. Mech. Mater., 2013, 438–439: 113–116

    Google Scholar 

  12. Yoo S W, Kwon S J, Jung S H. Analysis Technique for Autogenous Shrinkage in High Performance Concrete with Mineral and Chemical Admixtures[J]. Constr. Build. Mater., 2012, 34: 1–10

    Article  Google Scholar 

  13. Polat R, Demirboga R, Khushefati W H. Effects of Nano and Micro Size of Cao and Mgo, Nano-Clay and Expanded Perlite Aggregate on the Autogenous Shrinkage of Mortar[J]. Constr. Build. Mater., 2015, 81: 268–275

    Article  Google Scholar 

  14. Maltese C, Pistolesi C, Lolli A, et al. Combined Effect of Expansive and Shrinkage Reducing Admixtures to Obtain Stable and Durable Mortars[J]. Cem. Concr. Res., 2005, 35(12): 2244–2251

    Article  CAS  Google Scholar 

  15. Oliveira M J, Ribeiro A B, Branco F G. Combined Effect of Expansive and Shrinkage Reducing Admixtures to Control Autogenous Shrinkage in Self-Compacting Concrete[J]. Constr. Build. Mater., 2014, 52: 267–275

    Article  Google Scholar 

  16. Yan P, Lian H, Qin X. Several Issues in the Manufacture of Shrinkage-Compensating Concrete Using Expansive Agent[J]. J. Chin. Ceram. Soc., 2000, 28(12): 42–45 (in Chinese)

    Google Scholar 

  17. Cherel O C, Wang F Z, Yang J, et al. Effect of SAP on Properties of High Performance Concrete Under Marine Wetting and Drying Cycles[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2019, 34: 1136–1142

    Article  Google Scholar 

  18. Meddah M S, Suzuki M, Sato R. Influence of a Combination of Expansive and Shrinkage-Reducing Admixtures on Autogenous Deformation and Self-Stress of Silica Fume High-Performance Concrete[J]. Constr. Build. Mater., 2011, 25: 239–250

    Article  Google Scholar 

  19. Zhutovsky S, Kovler K, Bentur A. Efficiency of Lightweight Aggregates for Internal Curing of High Strength Concrete to Eliminate Autogenous Shrinkage[J]. Mater. Struct., 2002, 35(2): 97–101

    Article  CAS  Google Scholar 

  20. Lu L, Yang W, He Y, et al. Internal Curing Using Water-Releasing Material for High Strength Micro-Expansive Concrete[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2009, 24: 510–513

    Article  CAS  Google Scholar 

  21. Henkensiefken R, Bentz D, Nantung T, et al. Volume Change and Cracking in Internally Cured Mixtures Made with Saturated Light-weight Aggregate Under Sealed and Unsealed Conditions[J]. Cem. Concr. Compos., 2009, 31(7): 427–437

    Article  CAS  Google Scholar 

  22. Jones C, Goad D, Hale W M. Examining Soaking Duration of Coarse Clay and Shale Lightweight Aggregates for Internal Curing in Conventional Concrete[J]. Constr. Build. Mater., 2020, 249: 118 754

    Article  Google Scholar 

  23. Meng W, Khayat K. Effects of Saturated Lightweight Sand Content on Key Characteristics of Ultra-High-Performance Concrete[J]. Cem. Concr Res., 2017, 101: 46–54

    Article  CAS  Google Scholar 

  24. Wang D, Wang Q, Xue J. Reuse of Hazardous Electrolytic Manganese Residue: Detailed Leaching Characterization and Novel Application as a Cementitious Material[J]. Resour. Conserv. Recy., 2020, 154(3): 104 645

    Article  Google Scholar 

  25. China Building Industry Press. Common Portland Cement[S]. GB 175-2007/XG1-2009, 2009 (in Chinese)

  26. China Building Industry Press. Expansive Agents for Concrete[S]. GB 23439-2009, 2010 (in Chinese)

  27. ASTM International. Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate[S]. ASTM C128-07, 2007

  28. ASTM International. Standard Specification for Lightweight Aggregate for Internal Curing of Concrete[S]. ASTM C1761/ C1761M-17, 2017

  29. Bentz D P, Lura P, Roberts J W. Mixtures Proportioning for Internal Curing[J]. Concr Int., 2005, 27(2): 35–40

    CAS  Google Scholar 

  30. Tian Q, Sun W, Miao C W. Study on the Measurement of Autogenous Shrinkage of High Performance Concrete[J]. J. Build. Mater., 2005, 8(1): 82–89 (in Chinese)

    Google Scholar 

  31. Gao P, Xu S, Chen X, et al. Research on Autogenous Volume Deformation of Concrete with MgO[J]. Constr. Build. Mater., 2013, 40: 998–1001

    Article  Google Scholar 

  32. ASTM International. Standard Practice for Making and Curing Concrete Test Samples in the Laboratory[S]. ASTM C192/C192M-16, 2016

  33. Jiang C, Yang Y, Wang Y, et al. Autogenous Shrinkage of High Performance Concrete Containing Mineral Admixtures Under Different Curing Temperatures[J]. Constr. Build. Mater., 2014, 61(3): 260–269

    Article  Google Scholar 

  34. Amin M N, Kim J S, Dat T T, et al. Improving Test Methods to Measure Early-Age Autogenous Shrinkage in Concrete Based on Air Cooling[J]. IES. J. A, 2010, 3(4): 244–256

    Google Scholar 

  35. Zhang J, Hou D W, Sun W. Experimental Study on the Relationship Between Shrinkage and Interior Humidity of Concrete at Early Age[J]. Magaz. Concr Res., 2010, 62(3): 191–199

    Article  Google Scholar 

  36. Miao C W, Tian Q, Sun W, et al. Water Consumption of the Early-Age Paste and the Determination of “Time-Zero” of Self-Desiccation Shrinkage[J]. Cem. Concr Res., 2007, 37: 1496–1501

    Article  CAS  Google Scholar 

  37. China Building Industry Press. Standard Test Method of Mechanical Properties on Ordinary Concrete[S]. GB/T50081-2002, 2002 (in Chinese)

  38. Komlos K, Popovics S, Nürnbergerová T. Ultrasonic Pulse Velocity Test of Concrete Properties as Specified in Various Standards[J]. Cem. Concr. Compos., 1996, 18(5): 357–364

    Article  CAS  Google Scholar 

  39. Liu Z, Cui X H, Tang M S. Hydration and Setting Time of Mgo-Type Expansive Cement[J]. Cem. Concr Res., 1992, 22(1): 1–5

    Article  CAS  Google Scholar 

  40. Schwartzentruber A, Philippe M, Marchese G. Effect of PVA, Glass and Metallic Fibers and of an Expansive Admixtures on the Cracking Tendency of Ultrahigh Strength Mortar[J]. Cem. Concr Compos., 2004, 26: 573–580

    Article  CAS  Google Scholar 

  41. Kilincarslan S. The Effect of Zeolite Amount on the Physical and Mechanical Properties of Concrete[J]. Int. J. Phys. Sci., 2011, 13(6): 3041–3046

    Google Scholar 

  42. Agostini F, Davy C A, Skoczylas F, et al. Effect of Microstructure and Curing Conditions Upon the Performance of a Mortar Added with Treated Sediment Aggregates (TSA)[J]. Cem. Concr Res., 2010,40: 1609–1619

    Article  CAS  Google Scholar 

  43. Bentz D P. Internal Curing of High-Performance Blended Cement Mortars[J]. ACI Mater J., 2007, 104(4): 408–414

    CAS  Google Scholar 

  44. Kim J H, Choi S W, Lee K M, et al. Influence of Internal Curing on the Pore Size Distribution of High Strength Concrete[J]. Constr. Build. Mater., 2018, 192: 50–57

    Article  CAS  Google Scholar 

  45. Wasserman R, Bentur A. Interfacial Interactions in Lightweight Aggregate Concretes and Their Influence on the Concrete Strength[J]. Cem. Concr Compos., 1996, 18(1): 67–76

    Article  CAS  Google Scholar 

  46. Schröfl C, Mechtcherine V, Gorges M. Relation Between the Molecular Structure and the Efficiency of Superabsorbent Polymers (SAP) as Concrete Admixture to Mitigate Autogenous Shrinkage[J]. Cem. Concr Res., 2012, 42(6): 865–873

    Article  Google Scholar 

  47. Varga I D L, Castro J, Bentz D P, et al. Application of Internal Curing for Mixtures Containing High Volumes of Fly Ash[J]. Cem. Concr Compos., 2012, 34(9): 1001–1008

    Article  Google Scholar 

  48. Seo J, Park S, Yoon H N, et al. Effect of CaO Incorporation on the Microstructure and Autogenous Shrinkage of Ternary Portland Cement-Slag-Silica Fume[J]. Constr. Build. Mater., 2020, 249: 118691

    Article  CAS  Google Scholar 

  49. Zhang H, Li L, Wang W, et al. Effect of Temperature Rising Inhibitor on Expansion Behavior of Cement Paste Containing Expansive Agent[J]. Constr. Build. Mater., 2019, 199: 234–243

    Article  CAS  Google Scholar 

  50. Han Y, Zhang J, Luosun Y, et al. Effect of Internal Curing on Internal Relative Humidity and Shrinkage of High Strength Concrete Slabs[J]. Constr. Build. Mater., 2014,61: 41–49

    Article  Google Scholar 

  51. Bjøntegaard Ø, Hammer T A, Sellevold E J. On the Measurement of Free Deformation of Early Age Cement Paste and Concrete[J]. Cem. Concr Compos., 2004, 26(5): 427–435

    Article  Google Scholar 

  52. Zhou C, Ren F, Zeng Q, et al. Pore-Size Resolved Water Vapor Adsorption Kinetics of White Cement Mortars as Viewed From Proton NMR Relaxation[J]. Cem. Concr Res., 2018, 105: 31–43

    Article  CAS  Google Scholar 

  53. Hu S, Wu J, Yang W, et al. Relationship Between Autogenous Deformation and Internal Relative Humidity of High-Strength Expansive Concrete[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2010, 25: 504–508

    Article  CAS  Google Scholar 

  54. See H T, Attiogbe E K, Miltenberger M A. Potential for Restrained Shrinkage of Concrete and Motar[J]. Cem. Concr. Aggr., 2004, 26(2):123–130

    Google Scholar 

  55. Deng M, Hong D, Lan X, et al. Mechanism of Expansion in Hardened Cement Pastes with Hard-Burnt Free Lime[J]. Cem. Concr Res., 1995, 25(2): 440–448

    Article  CAS  Google Scholar 

Download references

Funding

Funded by National Natural Science Foundation of China (Nos. U1965105, 51878245, 52008189), Fundamental Research Funds for the Central Universities (No. B200203197), National Key Research and Development Program of China (No. 2017YFB0310100), Ningbo 2025 Science and Technology Major Project (No. 2020Z035) and the State Key Laboratory of High Performance Civil Engineering Materials (No. 2019CEM001)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Xu  (徐文) or Penggang Wang  (王鹏刚).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Li, J., Liu, H. et al. Effects of Shale and CaO Incorporation on Mechanical Properties and Autogenous Deformation of Early-age Concrete. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 653–663 (2021). https://doi.org/10.1007/s11595-021-2457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2457-z

Key words

Navigation