Skip to main content

Advertisement

Log in

In Vitro Angiogenic Behavior of HUVECs on Biomimetic SF/SA Composite Scaffolds

  • Biomaterial
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The 60Fc and 70Fc SF/SA blend scaffolds were prepared to mimic the functions of the native ECM for skin regeneration. Human Umbilical Vein Endothelial Cells (HUVECs) were used to examine the cell cytotoxicity, adhesion, growth factors secretion and the gene expression of associated angiogenic factors. Cell proliferation, adhesion and live-dead analyses showed that HUVECs could better attach, grow, and proliferate on the 70Fc scaffolds compared with 60Fc scaffolds and unmodified controls. Furthermore, the 70Fc scaffolds showed higher levels of specific angiogenic proteins and genes expression as well. This study suggests that the involvement of higher composition of SF (about 70%) than that of SA on the blended scaffolds could be advantageous as it is more suitable to promote angiogenesis, which is potential for vascularization during skin repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eming SA, Martin P, Tomic-Canic M. Wound Repair and Regeneration: Mechanisms, Signaling, and Translation[J]. Science Translational Medicine, 2014, 6(265): 265sr6

    Article  CAS  Google Scholar 

  2. O’Brien FJ. Biomaterials & Scaffolds for Tissue Engineering[J]. Materials Today, 2011, 14(3): 88–95

    Article  CAS  Google Scholar 

  3. Loh QL, Choong C. Three-dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size[J]. Tissue Eng. Part B Rev., 2013, 19(6): 485–502

    Article  CAS  Google Scholar 

  4. Howard D, Buttery LD, Shakesheff KM, et al. Tissue Engineering: Strategies, Stem Cells and Scaffolds[J]. J. Anat., 2008, 213(1): 66–72

    Article  CAS  Google Scholar 

  5. Ucuzian AA, Gassman AA, East AT, et al. Molecular Mediators of Angiogenesis[J]. J. Burn. Care. Res., 2010, 31(1): 158–75

    Article  Google Scholar 

  6. Bonnans C, Chou J, Werb Z. Remodelling the Extracellular Matrix in Development and Disease[J]. Nat. Rev. Mol. Cell. Biol., 2014, 15(12): 786–801

    Article  CAS  Google Scholar 

  7. Kyburz KA, Anseth KS. Synthetic Mimics of the Extracellular Matrix: How Simple is Complex Enough?[J]. Ann. Biomed. Eng., 2015, 43(3): 489–500

    Article  Google Scholar 

  8. Kim B-S, Park I-K, Hoshiba T, et al. Design of Artificial Extracellular Matrices for Tissue Engineering[J]. Progress in Polymer Science, 2011, 36(2): 238–68

    Article  CAS  Google Scholar 

  9. Ribeiro VP, Silva-Correia J, Gonçalves C, et al. Rapidly Responsive Silk Fibroin Hydrogels as an Artificial Matrix for the Programmed Tumor Cells Death[J]. PLoS One, 2018, 13(4): e0194441–8

    Article  CAS  Google Scholar 

  10. Yang W, Xu H, Lan Y, et al. Preparation and Characterisation of a Novel silk Fibroin/hyaluronic Acid/sodium Alginate Scaffold for Skin Repair[J]. International Journal of Biological Macromolecules, 2019, 130: 58–67

    Article  CAS  Google Scholar 

  11. Zheng A, Cao L, Liu Y, et al. Biocompatible Silk/calcium Silicate/sodium Alginate Composite Scaffolds for Bone Tissue Tngineering[J]. Carbohydrate Polymers, 2018, 199: 244–55

    Article  CAS  Google Scholar 

  12. Wang Y, Wang X, Shi J, et al. A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering[J]. Scientific Reports, 2016, 6: 39477–39483

    Article  CAS  Google Scholar 

  13. Shen G, Hu X, Guan G, et al. Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin[J]. PLoS One, 2015, 10(4): e0124811–8

    Article  CAS  Google Scholar 

  14. Tu F, Liu Y, Li H, et al. Vascular Cell Co-Culture on Silk Fibroin Matrix[J]. Polymers, 2018, 10(1): 39–45

    Article  CAS  Google Scholar 

  15. Adalı T, Uncu M. Silk Fibroin as a Non-thrombogenic Biomaterial[J]. International Journal of Biological Macromolecules, 2016, 90: 11–9

    Article  CAS  Google Scholar 

  16. Wang J, Wei Y, Yi H, et al. Cytocompatibility of a Silk Fibroin Tubular Scaffold[J]. Materials Science and Engineering: C, 2014, 34: 429–436

    Article  CAS  Google Scholar 

  17. de Moraes MA, Silva MF, Weska RF, et al. Silk Fibroin and Sodium Alginate Blend: Miscibility and Physical Characteristics[J]. Materials Science and Engineering: C, 2014, 40: 85–91

    Article  CAS  Google Scholar 

  18. Nogueira GM, Rodas ACD, Leite CAP, et al. Preparation and Characterization of Ethanol-treated Silk Fibroin Dense Membranes for Biomaterials Application Using Waste Silk Fibers as Raw Material[J]. Bioresource Technology, 2010, 101(21): 8446–8451

    Article  CAS  Google Scholar 

  19. Kawahara Y, Furukawa K, Yamamoto T. Self-Expansion Behavior of Silk Fibroin Film[J]. Macromolecular Materials and Engineering, 2006, 291(5): 458–462

    Article  CAS  Google Scholar 

  20. Zhang H, Liu X, Yang M, et al. Silk Fibroin/sodium Alginate Composite Nano-fibrous Scaffold Prepared through Thermally Induced Phase-separation (TIPS) Method for Biomedical Applications[J]. Materials Science and Engineering C, Biomimetic Materials, Sensors and Systems, 2015: 8–13

  21. Lee KY, Mooney DJ. Alginate: Properties and Biomedical Applications[J]. Progress in Polymer Science, 2012, 37(1): 106–26

    Article  CAS  Google Scholar 

  22. Wei G, Ma PX. Partially Nanofibrous Architecture of 3D Tissue Engineering Scaffolds[J]. Biomaterials, 2009, 30(32): 6426–6434

    Article  CAS  Google Scholar 

  23. Hu J, Feng K, Liu X, et al. Chondrogenic and Osteogenic Differentiations of Human Bone Marrow-derived Mesenchymal Stem Cells on a Nanofibrous Scaffold with Designed Pore Network[J]. Biomaterials, 2009, 30(28): 5061–5067

    Article  CAS  Google Scholar 

  24. Johnson KE, Wilgus TA. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair[J]. Adv Wound Care (New Rochelle), 2014, 3(10): 647–661

    Article  Google Scholar 

  25. Cao Y, Gong Y, Liu L, et al. The Use of Human Umbilical Vein Endothelial Cells (HUVECs) as an in vitro Model to Assess the Toxicity of Nanoparticles to Endothelium: A Review[J]. Journal of Applied Toxicology, 2017, 37(12): 1359–1369

    Article  CAS  Google Scholar 

  26. Grasman JM, Kaplan DL. Human Endothelial Cells Secrete Neurotropic Factors to Direct Axonal Growth of Peripheral Nerves[J]. Scientific Reports, 2017, 7(1): 4092

    Article  CAS  Google Scholar 

  27. Tan AW, Liau LL, Chua KH, et al. Enhanced in vitro Angiogenic Behaviour of Human Umbilical Vein Endothelial Cells on Thermally Oxidized TiO2 Nanofibrous Surfaces[J]. Scientific Reports, 2016, 6: 21828

    Article  CAS  Google Scholar 

  28. Haro Durand LA, Vargas GE, Vera-Mesones R, et al. In Vitro Human Umbilical Vein Endothelial Cells Response to Ionic Dissolution Products from Lithium-Containing 45S5 Bioactive Glass[J]. Materials (Basel), 2017, 10(7): 740

    Article  CAS  Google Scholar 

  29. Yahia LH, Mireles LK. 4 — X-ray Photoelectron Spectroscopy (XPS) and Time-of-flight Secondary Ion Mass Spectrometry (ToF SIMS)[M]. In: Tanzi MC, Farè S, editors. Characterization of Polymeric Biomaterials. Woodhead Publishing, 2017: 83–97

  30. Wang J, Sun X, Zhang Z, et al. Silk Fibroin/collagen/hyaluronic Acid Scaffold Incorporating Pilose Antler Polypeptides Microspheres for Cartilage Tissue Engineering[J]. Materials Science and Engineering: C, 2019, 94: 35–44

    Article  CAS  Google Scholar 

  31. Zhang Q, Lu H, Kawazoe N, et al. Pore Size Effect of Collagen Scaffolds on Cartilage Regeneration[J]. Acta Biomaterialia, 2014, 10(5): 2005–2013

    Article  CAS  Google Scholar 

  32. Liu J, Qi C, Tao K, et al. Sericin/Dextran Injectable Hydrogel as an Optically Trackable Drug Delivery System for Malignant Melanoma Treatment[J]. ACS Applied Materials & Interfaces, 2016, 8(10): 6411–6422

    Article  CAS  Google Scholar 

  33. Aslantürk Ö. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages[M]. London: Intech Open Limited, 2018

    Google Scholar 

  34. Escudero-Castellanos A, Ocampo-García BE, Domínguez-García MV, et al. Hydrogels Based on Poly(ethylene glycol) as Scaffolds for Tissue Engineering Application: Biocompatibility Assessment and Effect of the Sterilization Process[J]. Journal of Materials Science: Materials in Medicine, 2016, 27(12): 176–182

    Google Scholar 

  35. Ming J, Zuo B. A Novel Silk Fibroin/sodium Alginate Hybrid Scaffolds[J]. Polymer Engineering & Science, 2014, 54(1): 129–36

    Article  CAS  Google Scholar 

  36. O’Brien FJ, Harley BA, Yannas IV, et al. The Effect of Pore Size on Cell Adhesion in Collagen-GAG Scaffolds[J]. Biomaterials, 2005, 26(4): 433–41

    Article  CAS  Google Scholar 

  37. Murphy CM, O’Brien FJ. Understanding the Effect of Mean Pore Size on Cell Activity in Collagen-Glycosaminoglycan Scaffolds[J]. Cell Adh. Migr., 2010, 4(3): 377–381

    Article  Google Scholar 

  38. Balakrishnan B, Banerjee R. Biopolymer-Based Hydrogels for Cartilage Tissue Engineering[J]. Chemical Reviews, 2011, 111(8): 4453–4474

    Article  CAS  Google Scholar 

  39. Roberts JJ, Martens PJ. 9 — Engineering Biosynthetic Cell Encapsulation Systems[M]. In: Poole-Warren L, Martens P, Green R, editors. Biosynthetic Polymers for Medical Applications. Woodhead Publishing, 2016, 205–39

  40. Jones JR. Observing Cell Response to Biomaterials[J]. Materials Today, 2006, 9(12): 34–43

    Article  CAS  Google Scholar 

  41. Sarker B, Singh R, Silva R, et al. Evaluation of Fibroblasts Adhesion and Proliferation on Alginate-Gelatin Crosslinked Hydrogel[J]. PLoS One, 2014, 9(9): e107952–9

    Article  CAS  Google Scholar 

  42. Dalheim MØ, Vanacker J, Najmi MA, et al. Efficient Functionalization of Alginate Biomaterials[J]. Biomaterials, 2016, 80(9): 146–156

    Article  CAS  Google Scholar 

  43. Shen G, Hu X, Guan G, et al. Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin[J]. PLoS One, 2015, 10(4): e0124811

    Article  CAS  Google Scholar 

  44. Zhao M, Yu Z, Li Z, et al. Expression of Angiogenic Growth Factors VEGF, bFGF and ANG1 in Colon Cancer after Bevacizumab Treatment in vitro: A Potential Self-regulating Mechanism[J]. Oncology Reports, 2017, 37(1): 601–607

    Article  Google Scholar 

  45. Olivares-Navarrete R, Hyzy SL, Gittens RAs, et al. Rough Titanium Alloys Regulate Osteoblast Production of Angiogenic Factors[J]. Spine J., 2013, 13(11): 1563–70

    Article  Google Scholar 

  46. Matkar PN, Ariyagunarajah R, Leong-Poi H, et al. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis[J]. Biomolecules, 2017, 7(4): 74–9

    Article  CAS  Google Scholar 

  47. Chim SM, Tickner J, Chow ST, et al. Angiogenic Factors in Bone Local Environment[J]. Cytokine & Growth Factor Reviews, 2013, 24(3): 297–310

    Article  CAS  Google Scholar 

  48. Chiswick EL, Duffy E, Japp B, et al. Detection and Quantification of Cytokines and Other Biomarkers[J]. Methods Mol. Biol., 2012, 844: 15–30

    Article  CAS  Google Scholar 

  49. Murakami M, Nguyen LT, Hatanaka K, et al. FGF-dependent Regulation of VEGF Receptor 2 Expression in Mice[J]. The Journal of Clinical Investigation, 2011, 121(7): 2668–2678

    Article  CAS  Google Scholar 

  50. Li J, Ai H-j. The Responses of Endothelial Cells to Zr61Ti2Cu25Al12 Metallic Glass in vitro and in vivo[J]. Materials Science and Engineering: C, 2014, 40: 189–196

    Article  CAS  Google Scholar 

  51. Muhammad R, Lim SH, Goh SH, et al. Sub-100 nm Patterning of TiO2 Film for the Regulation of Endothelial and Smooth Muscle Cell Functions[J]. Biomaterials Science, 2014, 2(12): 1740–1749

    Article  CAS  Google Scholar 

  52. Han Y, Zhou J, Lu S, et al. Enhanced Osteoblast Functions of Narrow Interligand Spaced Sr-HA Nano-fibers/rods Grown on Microporous Titania Coatings[J]. RSC Advances, 2013, 3(28): 11169–1184

    Article  CAS  Google Scholar 

  53. Greenbaum D, Colangelo C, Williams K, et al. Comparing Protein Abundance and mRNA Expression Levels on a Genomic Scale[J]. Genome biology, 2003, 4(9): 117–123

    Article  Google Scholar 

  54. Liu Y, Beyer A, Aebersold R. On the Dependency of Cellular Protein Levels on mRNA Abundance[J]. Cell, 2016, 165(3): 535–550

    Article  CAS  Google Scholar 

  55. Bini E, Foo CWP, Huang J, et al. RGD-Functionalized Bioengineered Spider Dragline Silk Biomaterial[J]. Biomacromolecules, 2006, 7(11): 3139–3145

    Article  CAS  Google Scholar 

  56. Jao D, Mou X, Hu X. Tissue Regeneration: A Silk Road[J]. J. Funct. Biomater., 2016, 7(3): 22–28

    Article  CAS  Google Scholar 

  57. Liu T-l, Miao J-c, Sheng W-h, et al. Cytocompatibility of Regenerated Silk Fibroin Film: a Medical Biomaterial Applicable to Wound Healing[J]. J. Zhejiang Univ. Sci. B, 2010, 11(1): 10–16

    Article  CAS  Google Scholar 

  58. Farokhi M, Mottaghitalab F, Fatahi Y, et al. Overview of Silk Fibroin Use in Wound Dressings[J]. Trends in Biotechnology, 2018, 36(9): 907–922

    Article  CAS  Google Scholar 

  59. Zhang D, Cao N, Zhou S, et al. The Enhanced Angiogenesis Effect of VEGF-silk Fibroin Nanospheres-BAMG Scaffold Composited with Adipose Derived Stem Cells in a Rabbit Model[J]. RSC Advances, 2018, 8(27): 15158–15165

    Article  CAS  Google Scholar 

  60. Werner S, Grose R. Regulation of Wound Healing by Growth Factors and Cytokines[J]. Physiological Reviews, 2003, 83(3): 835–870

    Article  CAS  Google Scholar 

  61. Koh TJ, DiPietro LA. Inflammation and Wound Healing: The Role of the Macrophage[J]. Expert Rev. Mol. Med., 2011, 13: e23

    Article  Google Scholar 

  62. Eming SA, Krieg T, Davidson JM. Inflammation in Wound Repair: Molecular and Cellular Mechanisms[J]. The Journal of Investigative Dermatology, 2007, 127(3): 514–525

    Article  CAS  Google Scholar 

  63. Hübner G, Brauchle M, Smola H, et al. Differential Regulation of Pro-inflammatory Cytokines During Wound Healing in Normal and Glucocorticoid-treated Mice[J]. Cytokine, 1996, 8(7): 548–556

    Article  Google Scholar 

  64. Molan PC. Re-introducing Honey in the Management of Wounds and Ulcers-theory and Practice[J]. Ostomy/wound Management, 2002, 48(11): 28–40

    Google Scholar 

  65. Pejnović N, Lilić D, Zunić G, et al. Aberrant Levels of Cytokines within the Healing Wound after Burn Injury[J]. Archives of Surgery, 1995, 130(9): 999–1006

    Article  Google Scholar 

  66. Ju HW, Lee OJ, Lee JM, et al. Wound Healing Effect of Electrospun Silk Fibroin Nanomatrix in Burn-model[J]. Int. J. Biol. Macromol., 2016, 85: 29–39

    Article  CAS  Google Scholar 

  67. Chen J, Chen Y, Chen Y, et al. Epidermal CFTR Suppresses MAPK/NF-kappaB to Promote Cutaneous Wound Healing[J]. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2016, 39(6): 2262–2274

    Article  CAS  Google Scholar 

  68. Thuraisingam T, Xu YZ, Eadie K, et al. MAPKAPK-2 Signaling is Critical for Cutaneous Wound Healing[J]. The Journal of Investigative Dermatology, 2010, 130(1): 278–286

    Article  CAS  Google Scholar 

  69. Xing W, Guo W, Zou C-H, et al. Acemannan Accelerates Cell Proliferation and Skin Wound Healing through AKT/mTOR Signaling Pathway[J]. Journal of Dermatological Science, 2015, 79(2): 101–109

    Article  CAS  Google Scholar 

  70. LaValley DJ, Zanotelli MR, Bordeleau F, et al. Matrix Stiffness Enhances VEGFR-2 Internalization, Signaling, and Proliferation in Endothelial Cells[J]. Convergent Science Physical Oncology, 2017, 3(4): 044001

    Article  CAS  Google Scholar 

  71. Smith GA, Fearnley GW, Tomlinson DC, et al. The Cellular Response to Vascular Endothelial Growth Factors Requires Co-ordinated Signal Transduction, Trafficking and Proteolysis[J]. Biosci. Rep., 2015, 35(5): e00253

    Article  CAS  Google Scholar 

  72. Przybylski M. A Review of the Current Research on the Role of bFGF and VEGF in Angiogenesis[J]. Journal of Wound Care, 2009, 18(12): 516–519

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyu Wang  (王欣宇) or Binbin Li  (李宾斌).

Additional information

Supported by the Major Special Projects of Technological Innovation of Hubei Province, China (No. 2017ACA168) and the National Key R&D Program of China (No.2017YFC1103800)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kombo, O.R., Wang, X., Shen, Y. et al. In Vitro Angiogenic Behavior of HUVECs on Biomimetic SF/SA Composite Scaffolds. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 456–464 (2021). https://doi.org/10.1007/s11595-021-2430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2430-x

Key words

Navigation