Skip to main content

Advertisement

Log in

Uncovering the Phase Transition of Berlinite (α-AlPO4) under High Pressure: Insights from First-principles Calculations

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

We investigated the mechanism of crystalline-to-amorphous phase transition (CAPT) for amorphous berlinite (α-AlPO4) under high pressure using ab initio constant-pressure techniques. Our results show that the pressure to the change in phase transition takes place at around 20 GPa, which is inconsistent with the previous results of around 15 GPa. To confirm the feasibility of our model, the calculated X-ray powder diffraction for crystal berlinite is concordant with the standard PDF card. By assessing a full spectrum of properties including atomic structure, bonding characteristics, electron density of states and real-space pair distribution function at each pressure, we reveal the details of phase transition. Importantly, all the information from our present results elucidates that Al-O bonds play an irreplaceable role during the process of phase transition to uncover the structural and electronic properties of berlinite. Overall, our work substantiates that it is essential to utilize a wide range of changes in order to provide a comprehensive understanding on the nature of the CAPT in other inorganic oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sankaran HS, Sharma M, Sikka SK. Pressure Induced Amorphization of AlPO4[J]. Pramana-J. Phys., 1990, 35: 177–180

    Article  CAS  Google Scholar 

  2. Tse JS, Klug DD. Structural Memory in Pressure-amorphized AlPO4[J]. Science, 1992, 255: 1 559–1 561

    Article  CAS  Google Scholar 

  3. Christie DM, Troullier N, Chelikowsky JR. Electronic and Structural Properties of α-berlinite (AlPO4)[J]. Solid State Commun., 1996, 98: 923–926

    Article  CAS  Google Scholar 

  4. Polian A, Grimsditch M, Philippot E. Memory Effects in Pressure Induced Amorphous AlPO4[J]. Phys. Rev. Lett., 1993, 71: 3 143

    Article  CAS  Google Scholar 

  5. Keskar NR, Chelikowsky JR, Wentzcovitch RM. Mechanical Instabilities in AlPO4[J]. Phys. Rev. B, 1994, 50: 9072

    Article  CAS  Google Scholar 

  6. Jayaraman A, Wood DL Sr. Maines RG. High-pressure Raman Study of the Vibrational Modes in AlPO4 and SiO2 (α-quartz)[J]. Phys. Rev. B., 1987, 35: 8316

    Article  CAS  Google Scholar 

  7. Kruger MB, Jeanloz R. Memory Glass: An Amorphous Material Formed from AlPO4[J]. Science, 1990, 249: 647–649

    Article  CAS  Google Scholar 

  8. Garg N, Sharma SM. A Molecular Dynamical Investigation of High-pressure Phase Transformations in Berlinite (alpha-AlPO4)[J]. J. Phys. Condens Matter, 2000, 12: 375

    Article  CAS  Google Scholar 

  9. Cordier P, Gratz AJ, Doukhan JC, Nellis W. Microstructures of AIPO4 Subjected to High Shock Pressures[J]. J. Phys.Chem. Miner, 1994, 21: 133–139

    Article  CAS  Google Scholar 

  10. Cordier P, Doukhan C, Peyronneau J. Structural Transformations of Quartz and Berlinite AlPO4 at High Pressure and Room Temperature: a Transmission Electron Microscopy Study[J]. J. Phys. Chem. Miner, 1993, 20: 176–189

    CAS  Google Scholar 

  11. Sharma SM, Sikka SK. Pressure Induced Amorphization of Materials[J]. Prog. Mater. Sci., 1996, 40: 1–77

    Article  CAS  Google Scholar 

  12. Kresse G, Hafner J. Ab Initio Molecular Dynamics for Liquid Metals[J]. Phys. Rev. B., 1993, 47: 558

    Article  CAS  Google Scholar 

  13. Kresse G, Furthmüller J. Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors using a Plane-wave Basis Set[J]. Comput Mater. Sci., 1996, 6: 15–50

    Article  CAS  Google Scholar 

  14. Ching WY. Theoretical Studies of the Electronic Properties of Ceramic Materials[J]. J. Am. Ceram. Soc., 1990, 73: 3 135–3 160

    Article  CAS  Google Scholar 

  15. Williams Q, Jeanloz R. Static Amorphization of Anorthite at 300 K and Comparison with Diaplectic Glass[J]. Nature, 1989, 338: 413–415

    Article  CAS  Google Scholar 

  16. Watson GW, Parker SC. Dynamical Instabilities in α-quartz and α-berlinite: a Mechanism for Amorphization[J]. Phys. Rev. B., 1995, 52: 306

    Google Scholar 

  17. Murli C, Sharma SM, Kulshreshtha SK, Sikka SK. High Pressure Study of Phase Transitions in a-FePO4[J]. Phys. Chem. Miner, 1997, 49: 285–291

    CAS  Google Scholar 

  18. Li N, Ching WY. Structural, Electronic and Optical Properties of a Large Random Network Model of Amorphous SiO2 Glass[J]. J. Non-Cryst. Solids, 2014, 383: 28–32

    Article  CAS  Google Scholar 

  19. Li N, Sakidja R, Aryal S, Ching WY. Densification of a Continuous Random Network Model of Amorphous SiO2 Glass[J]. Phys. Chem. Chem. Phys., 2014, 16: 1 500–1 514

    Article  CAS  Google Scholar 

  20. Adhikari P, Xiong M, Li N, Zhao X, Rulis P, Ching WY. Structure and Electronic Properties of a Continuous Random Network Model of An Amorphous Zeolitic Imidazolate Framework (a-ZIF)[J]. J. Phys. Chem. C., 2016, 120: 15 362–15 368

    Article  CAS  Google Scholar 

  21. Baral K, Li A, Ching WY. Ab initio Modeling of Structure and Properties of Single and Mixed Alkali Silicate Glasses[J]. J. Phys. Chem. A., 2017, 121: 7 697–7 708

    Article  CAS  Google Scholar 

  22. Baral K, Ching WY. Electronic Structures and Physical Properties of Na2O Doped Silicate Glass[J]. J. Appl. Phys., 2017, 121: 245103

    Article  Google Scholar 

  23. Roux S Le, Petkov V. ISAACS-interactive Structure Analysis of Amorphous and Crystalline Systems[J]. J. Appl. Cryst., 2010, 43: 181–185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neng Li  (李能) or Fei Guo  (郭飞).

Additional information

Funded by the Foundation of the State Key Laboratory of Optical Fiber and Cable Manufacture Technology (No. SKLD1602), the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (No. 161008), the Foundation of the State Key Laboratory of Refractors and Metallurgy (G201605), the Natural Science Fund for Distinguished Young Scholars of Hubei Province (No.2020CFA087), the Basic Research Program of Shenzhen (No. JCYJ20190809120015163), the Overseas Expertise Introduction Project (111 Project) for Discipline Innovation of China (No. B18038), and the Research Board of the State Key Laboratory of Silicate Materials for Architectures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Hu, H., Guo, F. et al. Uncovering the Phase Transition of Berlinite (α-AlPO4) under High Pressure: Insights from First-principles Calculations. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 248–254 (2021). https://doi.org/10.1007/s11595-021-2402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2402-1

Key words

Navigation