Skip to main content
Log in

High Purity Hydrogen Production by Metal Hydride System: A Parametric Study Based on the Lumped Parameter Model

  • Metallic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The simulation of hydrogen purification in a mixture gas of hydrogen/carbon dioxide (H2/CO2) by metal hydride system was reported. The lumped parameter model was developed and validated. The validated model was implemented on the software Matlab/Simulink to simulate the present investigation. The simulation results demonstrate that the purification efficiency depends on the external pressure and the venting time. An increase in the external pressure and enough venting time makes it possible to effectively remove the impurities from the tank during the venting process and allows to desorb pure hydrogen. The impurities are partially removed from the tank for low external pressure and venting time during the venting process and the desorbed hydrogen is contaminated. Other parameters such as the overall heat transfer coefficient, solid material mass, supply pressure, and the ambient temperature influence the purification system in terms of the hydrogen recovery rate. An increase in the overall heat transfer coefficient, solid material mass, and supply pressure improves the hydrogen recovery rate while a decrease in the ambient temperature enhances the recovery rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ΔH :

Reaction enthalpy, J/mol

ΓS :

Reaction entropy, J/mol/K

A :

Area of heat transfer, m2

C p :

Heat capacity, J/kg K

E :

Activation energy, J/mol

f :

Net mass flow rate, g/s

imp :

Impurity

m :

Mass, g

M:

Molecular weight, kg/mol

P eq :

Equilibrium pressure, Pa

r :

Reaction rate, gMH/gs/s

R :

Universal gas constant, J/mol K

sl :

Plateau slope coefficient

T f :

Ambient temperature, K

T :

inflow/outflow temperature, K

U :

Overall heat transfer coefficient, W/m2 K

V g :

Volume for gas phase in the reactor, m3

a :

Absorption

d :

Desorption

CO2 :

Carbon dioxide

H2 :

Hydrogen gas

in:

Inlet

MH:

Metal hydride

out:

Outlet

s:

Solid

v:

Venting

References

  1. Hui W, Ajay KP, Suresh GA. Accelerating Hydrogen Absorption in a Metal Hydride Storage Tank by Physical Mixing[J]. Int. J. Hydrogen Energy, 2014, 39: 11 035–11 046

    Article  Google Scholar 

  2. Chen X, Wei L, Yang F, et al. A Review on the Metal Hydride Based Hydrogen Purification and Separation Technology[J]. Applied Mechanics and Materials, 2014, 448–453: 3 027–3 036

    Google Scholar 

  3. Nasrallah S, Jemni A. Heat and Mass Transfer Models in Metal-Hydrogen Reactor[J]. Int. J. Hydrogen Energy, 1997, 22: 67–76

    Article  Google Scholar 

  4. Jemni A, Nasrallah S. Study of Two-Dimensional Heat and Mass Transfer during Absorption in a Metal-Hydrogen Reactor[J]. Int. J. Hydrogen Energy, 1995, 20: 43–52

    Article  CAS  Google Scholar 

  5. Jemni A, Nasrallah S. Study of Two-Dimensional Heat and Mass Transfer During Desorption in a Metal-Hydrogen Reactor[J]. Int. J. Hydrogen Energy, 1995, 20: 881–891

    Article  CAS  Google Scholar 

  6. Garrier S, Delhomme B, De Rango P, et al. A New MgH2 Tank Concept Using a Phase-Change Material to Store the Heat of Reaction[J]. Int. J. Hydrogen Energy, 2013, 38: 9 766–9 771

    Article  CAS  Google Scholar 

  7. Mellouli S, Askri F, Dhaou H, et al. Numerical Study of Heat Exchanger Effects on Charge/Discharge Times of Metal-Hydrogen Storage Vessel[J]. Int. J. Hydrogen Energy, 2009, 34: 3 005–3 017

    Article  CAS  Google Scholar 

  8. El Mghari H, Huot J, Xiao J. Analysis of Hydrogen Storage Performance of Metal Hydride Reactor with Phase Change Materials[J]. Int. J. Hydrogen Energy, 2017, 44(54): 28 893–28 908

    Article  Google Scholar 

  9. Askri F, Jemni A, Nasrallah S. Prediction of Transient Heat and Mass Transfer in a Closed Metal-Hydrogen Reactor[J]. Int. J. Hydrogen Energy, 2004, 29: 195–208

    Article  CAS  Google Scholar 

  10. Chung CA, Ho CJ. Thermal-Fluid Behavior of the Hydriding and Dehydriding Processes in a Metal Hydride Hydrogen Storage Canister[J]. Int. J. Hydrogen Energy, 2009, 34: 4 351–4 364

    Article  CAS  Google Scholar 

  11. Yang F, Wang G, Zhang Z, et al. Design of the Metal Hydride Reactor-A Review on the Key Technical Issues[J]. Int. J. Hydrogen Energy, 2010, 35: 3 832–3 840

    Article  CAS  Google Scholar 

  12. Laurencelle F, Goyette J. Simulation of Heat Transfer in a Metal Hydride Reactor with Aluminum Foam[J]. Int. J. Hydrogen Energy, 2007, 32: 2 957–2 964

    Article  CAS  Google Scholar 

  13. Mellouli S, Dhaou H, Askri F, et al. Hydrogen Storage in Metal Hydride Tanks Equipped with Metal Foam Heat Exchanger[J]. Int. J. Hydrogen Energy, 2009, 34: 9 393–9 401

    Article  CAS  Google Scholar 

  14. Minko K, Artemov V, Yan’kov G. Numerical Simulation of Sorption/Desorption Processes in Metal-Hydride Systems for Hydrogen Storage and Purification. Part I: Development of a Mathematical Model[J]. Int. J. Heat and Mass Transfer, 2014, 68: 683–692

    Article  CAS  Google Scholar 

  15. Minko K, Artemov V, Yan’kov G. Numerical Simulation of Sorption/Desorption Processes in Metal-Hydride Systems for Hydrogen Storage and Purification. Part II: Verification of the Mathematical Model[J]. Int. J. Heat and Mass Transfer, 2014, 68: 693–702

    Article  CAS  Google Scholar 

  16. Minko K, Artemov V, Yan’kov G. Numerical Study of Hydrogen Purification Using Metal Hydride Reactor with Aluminum Foam[J]. Applied Thermal Engineering, 2015, 76: 175–184

    Article  CAS  Google Scholar 

  17. Talaganis BA, Meyer GO, Aguirre PA. Modeling and Simulation of Absorption-Desorption Cyclic Processes for Hydrogen Storage-Compression Using Metal Hydrides[J]. Int. J. Hydrogen Energy, 2011, 36: 13 621–13 631

    Article  CAS  Google Scholar 

  18. Talaganis BA, Meyer GO, Oliva DG, et al. Modeling and Optimal Design of Cyclic Processes for Hydrogen Purification Using Hydride-Forming Metals[J]. Int. J. Hydrogen Energy, 2014, 39: 18 997–19 008

    Article  CAS  Google Scholar 

  19. Xiao J, Tong L, Yang T, et al. Lumped Parameter Simulation of Hydrogen Storage and Purification Systems Using Metal Hydrides[J]. Int. J. Hydrogen Energy, 2017, 42: 3 698–3 707

    Article  CAS  Google Scholar 

  20. Artemov VI, Minko KB, Yan’kov GG. Numerical Study of Heat and Mass Transfer Processes in a Metal Hydride Reactor for Hydrogen Purification[J]. Int. J. Hydrogen Energy, 2016, 41: 9 762–9 768

    Article  CAS  Google Scholar 

  21. Miura S, Fujisawa A, Ishida M. A Hydrogen Purification and Storage System Using Metal Hydride[J]. Int. J. Hydrogen Energy, 2012, 37: 2 794–2 799

    Article  CAS  Google Scholar 

  22. Miura S, Fujisawa A, Tomekawa S, et al. A Hydrogen Purification and Storage System Using CO Adsorbent and Metal Hydride[J]. J. Alloys Compd., 2013, 580: S414–S417

    Article  CAS  Google Scholar 

  23. Fujisawa A, Miura S, Yamashita T, et al. Development of Pure Hydrogen Production/Supply System for PEFC Using CO Selective Adsorbent and Metal Hydride[C]. Conference of the JIE, 2009: 252–253

  24. Fujisawa A, Miura S. Development of Pure Hydrogen Production/Supply System for PEFC Using CO Selective Adsorbent and Metal Hydride[C]. Conference of HESS, Japan, 2009

  25. Dunikov D, Borzenko V, Blinov D, et al. Biohydrogen Purification Using Metal Hydride Technologies[J]. Int. J. Hydrogen Energy, 2016, 41: 21 787–21 794

    Article  CAS  Google Scholar 

  26. Libowitz, Hayes H, Gibb T. The System Zirconium-Nickel and Hydrogen[J]. J. Phys. Chem., 1958, 62: 76–79

    Article  CAS  Google Scholar 

  27. Justi E W, Ewe H H, Kalberlah A W, et al. Electrocatalysis in the Nickel-Titanium System[J]. Energy Conversion, 1970, 183–187

  28. Ayari M, Ghodbane O, Abdellaoui M. Electrochemical Study of the Reversible Hydrogen Storage in Ceti2 Cr4 Ni5 -Based Metal Hydride Alloys[J]. Int. J. Hydrogen Energy, 2016, 41(41): 18 582–18 591

    Article  CAS  Google Scholar 

  29. Reilly J J, Wiswal H W. Formation and Properties of Iron Titanium Hydride[J]. Inorg. Chem., 1974: 218–222

  30. Noreus D, Werner P, Alasafi K, et al. Structural Studies of TiNiH[J]. Int. J. Hydrogen Energy, 1985, 10(7–8): 547–550

    Article  CAS  Google Scholar 

  31. Srinivas G, Sankaranarayanan V, Ramaprabhu S. Diffusion of Hydrogen in Cubic Laves Phase Ho1−xMmxCo2Ho1−xMmxCo2 (x=0, 0.2 and 0.4) Alloys[J]. Int. J. Hydrogen Energy, 2007, 32(14): 2 965–2 970

    Article  CAS  Google Scholar 

  32. Kandavel M, Ramaprabhu S. Hydrogen Solubility and Diffusion Studies of Zr-Based AB2 Alloys and Sol-Gel Encapsulated AB2 Alloy Particles[J]. Intermetallics, 2007, 15(7): 968–975

    Article  CAS  Google Scholar 

  33. Van Vucht J, Kuijpers F, Bruning H. Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds[J]. Philips Res. Rep., 1970, 25: 133–140

    CAS  Google Scholar 

  34. Lundin CE, Lynch FE. Solid-State Hydrogen Storage Materials for Application to Energy Needs[R]. Rept. AFSOR, F44620-74-C0020, Denver Res. Inst., Jan., 1975

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianqi Yang  (杨天麒).

Additional information

Funded by National Natural Science Foundation of China (No. 51476120), 111 Project (No.B17034), and the Innovative Research Team Development Program of Ministry of Education of China (No. IRT_17R83)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koua, K.A.J., Tong, L., Yang, T. et al. High Purity Hydrogen Production by Metal Hydride System: A Parametric Study Based on the Lumped Parameter Model. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 127–135 (2021). https://doi.org/10.1007/s11595-021-2385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2385-y

Key words

Navigation