Skip to main content
Log in

Fatigue Crack Growth Behavior of Different Zones in an Annealed Automatic Gas Tungsten Arc Weld Joint of TA16 and TC4 Titanium Alloys

  • Metallic Material
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Based on the investigated microstructure of different zones in the annealed automatic gas tungsten arc weld joint of TA16 and TC4 titanium alloys, the mechanical property of them was assessed under fatigue crack growth rate tests. For evaluation of fatigue crack growth rate, three points bending specimens were used. The correlation between the range of stress intensity factor and crack growth rate was determined in different zones of the annealed weld joint. Fatigue crack growth rates were obviously different in different zones of weld joint of dissimilar titanium alloys, due to their different microstructures. Scanning electron microscope examinations were conducted on the fracture surface in order to determine the relevant fracture mechanisms and crack growth mechanisms with respect to the details of microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castany P, Gloriant T, Sun F, et al. Design of Straintransformable Titanium Alloys[J]. Comptes Rendus Physique, 2018, 19(8): 710–720

    Article  CAS  Google Scholar 

  2. Ma TF, Zhou X, Du Y, et al. High Temperature Deformation and Microstructural Evolution of Core-shell Structured Titanium Alloy[J]. Journal of Alloys and Compounds, 2019, 775: 316–321

    Article  CAS  Google Scholar 

  3. Singh P, Pungotra H, Kalsi NS. On the Characteristics of Titanium Alloys for the Aircraft Applications[J]. Materials Today: Proceedings, 2017, 4(8): 8 971–8 982

    CAS  Google Scholar 

  4. Lee HK, Han HS, Son KJ, et al. Optimization of Nd: YAG Laser Welding Parameters for Sealing Small Titanium Tube Ends[J]. Materials Science and Engineering: A, 2006, 415(1–2): 149–155

    Article  Google Scholar 

  5. Yixuan L, Fulin H. The Connection Characteristics of Titanium Alloy Pipes in Vibration Environment[C]. In: 5th International Conference on Measurement Instrumentation and Automation, 2016: 43–47

  6. Sun B, Qiu M, Tian J, et al. Research on Design and Process of External Titanium Alloy Tube for Aeroengine[J]. Aeronautical Manufacturing Technology, 2015, 493(z2): 124–128

    Google Scholar 

  7. Zhao P, Fu L, Chen H. Low Cycle Fatigue Properties of Linear Friction Welded Joint of TC11 and TC17 Titanium Alloys[J]. Journal of Alloys and Compounds, 2016, 675: 248–256

    Article  CAS  Google Scholar 

  8. Wang SQ, Liu JH, Chen DL. Tensile and Fatigue Properties of Electron Beam Welded Dissimilar Joints between Ti-6Al-4V and BT9 Titanium Alloys[J]. Materials Science and Engineering: A, 2013, 584: 47–56

    Article  CAS  Google Scholar 

  9. Wang SQ, Liu JH, Lu ZX, et al. Cyclic Deformation of Dissimilar Welded Joints between Ti-6Al-4V and Ti17 Alloys: Effect of Strain Ratio[J]. Materials Science and Engineering: A, 2014, 598: 122–134

    Article  CAS  Google Scholar 

  10. Tan L, Yao Z, Zhou W, et al. Microstructure and Properties of Electron Beam Welded Joint of Ti-22Al-25Nb/TC11[J]. Aerospace Science and Technology, 2010, 14(5): 302–306

    Article  CAS  Google Scholar 

  11. Lei ZL, Dong ZJ, Chen YB, et al. Microstructure and Mechanical Properties of Laser Welded Ti-22Al-27Nb/TC4 Dissimilar Alloys[J]. Materials Science and Engineering: A, 2013, 559: 909–916

    Article  CAS  Google Scholar 

  12. Wen GD, Ma TJ, Li WY, et al. Strain-controlled Fatigue Properties of Linear Friction Welded Dissimilar Joints between Ti-6Al-4V and Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloys[J]. Materials Science and Engineering: A, 2014, 612: 80–88

    Article  CAS  Google Scholar 

  13. Zou J, Cui Y, Yang R. Diffusion Bonding of Dissimilar Intermetallic Alloys Based on Ti2AlNb and TiAl[J]. Journal of Materials Science & Technology, 2009, 25(6): 819–824

    Article  CAS  Google Scholar 

  14. Huang Y, Jialin G, Qing L, et al. Study of δ-hydrides in Ti-2Al-2.5Zr and Ti-4Al-2V Alloys[J]. Rare Metals, 2006, 25(1): 16–20

    Article  CAS  Google Scholar 

  15. Hang W, Yan LX, Qiao YS, et al. Low Cycle Fatigue Behaviors and Microstructures of Ti-2Al-2.5Zr with Fine Grain at RT and 77K[J]. Acta Metallurgica Sinica, 2009, 45(4): 434–441

    Google Scholar 

  16. Radecka A, Bagot PAJ, Martin TL, et al. The Formation of Ordered Clusters in Ti-7Al and Ti-6Al-4V[J]. Acta Materialia, 2016, 112: 141–149

    Article  CAS  Google Scholar 

  17. Shao L, Wu SJ, Peng WY, et al. Microstructure and Mechanical BeHavior of an Annealed Automatic Gas Tungsten Arc Weld Joint of TA16 and TC4 Titanium Alloys[J]. Materials Research Express, 2019, 6(5): 056523

    Article  CAS  Google Scholar 

  18. Ahadi A, Sun Q. Grain Size Dependence of Fracture Toughness and Crack-growth Resistance of Superelastic NiTi[J]. Scripta Materialia, 2016, 113: 171–175

    Article  CAS  Google Scholar 

  19. Shi J, Chopp D, Lua J, et al. Abaqus Implementation of Extended Finite Element Method using a Level Set Representation for Three-dimensional Fatigue Crack Growth and Life Predictions[J]. Engineering Fracture Mechanics, 2010, 77(14): 2 840–2 863

    Article  Google Scholar 

  20. Li S, Kang Y, Zhu G, et al. Microstructure and Fatigue Crack Growth Behavior in Tungsten Inert Gas Welded DP780 Dual-phase Steel[J]. Materials & Design, 2015, 85: 180–189

    Article  CAS  Google Scholar 

  21. Sudhakar KV, Dwarakadasa ES. A Study on Fatigue Crack Growth in Dual Phase Martensitic Steel in Air Environment[J]. Bull Mater. Sci., 2000, 23: 193–199

    Article  CAS  Google Scholar 

  22. Balasubramanian V, Lakshminarayanan AK, Malarvizhi S. Effect of Welding Processes on Fatigue Behaviour of AISI 409M Grade Ferritic Stainless Steel Joints[J]. Advanced Materials Research, 2013, 794: 391–412

    Article  Google Scholar 

  23. Paris P, Erdogan F. A Critical Analysis of Crack Propagation Laws[J]. J. Basic Eng., 1963, 85: 528–533

    Article  CAS  Google Scholar 

  24. Wang YL, Pan QL, Wei LL, et al. Effect of Retrogression and Reaging Treatment on the Microstructure and Fatigue Crack Growth Behavior of 7050 Aluminum Alloy Thick Plate[J]. Materials & Design, 2014, 55: 857–863

    Article  CAS  Google Scholar 

  25. Song ZQ, He Q, Ma E, et al. Fatigue Endurance Limit and Crack Growth Behavior of a High-toughness Zr61Ti2Cu25Al12 Bulk Metallic Glass[J]. Acta Materialia, 2015, 99: 165–175

    Article  CAS  Google Scholar 

  26. KoneČNÁ R, Bubenko L, Nicoletto G. Microstructure vs. Near-threshold Fatigue Crack Growth Behavior of an Heat-treated Ductile Iron[J]. Materials Science, 2012, 18(1): 23–27

    Article  Google Scholar 

  27. Farabi N, Chen DL, Li J, et al. Microstructure and Mechanical Properties of Laser Welded DP600 Steel Joints[J]. Materials Science and Engineering: A, 2010, 527(4–5): 1 215–1 222

    Article  Google Scholar 

  28. Shen F, Wang B, Yi D, et al. Effects of Heating Rate during Solid-solution Treatment on Microstructure and Fatigue Properties of AA2524 T3 Al-Cu-Mg Sheet[J]. Materials & Design, 2016, 104: 116–125

    Article  CAS  Google Scholar 

  29. Zheng ZQ, Cai B, Zhai T, et al. The Behavior of Fatigue Crack Initiation and Propagation in AA2524-T34 Alloy[J]. Materials Science and Engineering: A, 2011, 528(4–5): 2 017–2 022

    Article  Google Scholar 

  30. Shen F, Yi D, Jiang Y, et al. Semi-quantitative Evaluation of Texture Components and Fatigue Properties in 2524 T3 Aluminum Alloy Sheets[J]. Materials Science and Engineering: A, 2016, 657: 15–25

    Article  CAS  Google Scholar 

  31. Wang X, Shi Q, Wang X, et al. The Influences of Precrack Orientations in Welded Joint of Ti-6Al-4V on Fatigue Crack Growth[J]. Materials Science and Engineering: A, 2010, 527(4–5): 1 008–1 015

    Article  Google Scholar 

  32. Balasubramanian TS, Balasubramanian V, Muthu Manickam MA. Fatigue Crack Growth Behaviour of Gas Tungsten Arc, Electron Beam and Laser Beam Welded Ti-6Al-4V Alloy[J]. Materials & Design, 2011, 32(8–9): 4 509–4 520

    Article  CAS  Google Scholar 

  33. Ping G, Yong QZ, Wei DZ. Fatigue Crack Growth Behavior in TC4-DT Titanium alloy with Different Lamellar Microstructures[J]. Rare Metal Materials and Engineering, 2015, 44(2): 277–281

    Article  Google Scholar 

  34. Hanlon T, Tabachnikova E, Suresh S. Fatigue Behavior of Nanocrystalline Metals and Alloys[J]. International Journal of Fatigue, 2005, 27(10–12): 1 147–1 158

    Article  CAS  Google Scholar 

  35. Singh A, Tang L, Dao M, et al. Fracture Toughness and Fatigue Crack Growth Characteristics of Nanotwinned Copper[J]. Acta Materialia, 2011, 59(6): 2 437–2 446

    Article  CAS  Google Scholar 

  36. Ghonem H. Microstructure and Fatigue Crack Growth Mechanisms in High Temperature Titanium Alloys[J]. International Journal of Fatigue, 2010, 32(9): 1 448–1 460

    Article  CAS  Google Scholar 

  37. Suresh S. Fatigue Crack Deflection and Fracture Surface Contact: Micromechanical Models[J]. Metallurgical Transactions A, 1985, 16: 249–260

    Article  Google Scholar 

  38. Jinkeun Oh NJK, Sunghak L, Eui WL. Correlation of Fatigue Properties and Microstructure in Investment Cast Ti-6Al-4V Welds[J]. Materials Science and Engineering: A, 2003, 340: 232–242

    Article  Google Scholar 

  39. Verdhan N, Bhende DD, Kapoor R, et al. Effect of Microstructure on the Fatigue Crack Growth Behaviour of a Near-α Ti Alloy[J]. International Journal of Fatigue, 2015, 74: 46–54

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujun Wu  (吴素君).

Additional information

Funded in Part by the Grant from Technology and Industry for National Defense, China (No. AXXD1818)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, L., Wu, S., Peng, W. et al. Fatigue Crack Growth Behavior of Different Zones in an Annealed Automatic Gas Tungsten Arc Weld Joint of TA16 and TC4 Titanium Alloys. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 1090–1097 (2020). https://doi.org/10.1007/s11595-020-2359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2359-5

Key words

Navigation