Skip to main content
Log in

Lithium Behavior in Salt-water System Explored by Molecular Dynamics Simulation

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The molecular dynamics simulation method was adopted to study the transient characteristics of Li+, CO32−, and SO42− in Na+, K+, Li+, Cl, and SO42−/H2O system. The composition of Na+, K+, Li+, Cl, SO4 and CO3 was selected to optimize the initial structural model and conduct dynamic simulation. The mean azimuth shift and diffusion coefficient of Li+, CO32−, and SO42− in the system, the radial distribution function and potential energy between Li+ and −OW, SO42 and −OW as well as CO32 and −OW, and the dielectric constant of hydrogen bond were expounded and analyzed. At the same time, the Li enrichment behavior in the evaporation process of salt lake brine was analyzed based on the simulated data. The results show that the simulation results are in good agreement with the experimental values, which verifies that, compared with other ions, the crystallization of Li+ and SO42− occurs earlier after reaching saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LEI Jiaheng, GONG Qiaoxia, SHANG Jianhua, CHEN Yongxi, YUAN Q-hua. Study on Synthesis and Porperties of Normal Spinel Structure LiMn2O4 for Lithium Ion-sieve Precursor[J]. Journal of Wuhan University(Neo-Confucianism), 2001, 47(6): 707–711

    CAS  Google Scholar 

  2. YANG Zaojuan, Xiang Lan. Progress on the Extraction of Lithium fome the Salt Lake Brine[J]. Joumal of Salt and Chem jcal Industry, 2005, 234(6): 27–29

    Google Scholar 

  3. LUO Shasha, ZHENG Mianping. EXPLOITATION Actuality of Saline Lake Lithium Resources in TibetI[J]. Geology and Prospecting, 2004, 40(3):11–14

    CAS  Google Scholar 

  4. GAO Feng, ZHENG Mianping, NIE Zhen, LIU Jianhua, SONG Pengsheng. Brine Lithium Resource in the Salt Lake and Advances in Its Exploitation[J]. Acta Geoscientica Sinica, 2001, 32(4): 483–490

    Google Scholar 

  5. WANG Yongsheng, ZHENG Mianping, NIE Zhen, BU Lingzhong, GAO Feng. 5 °C-Isothermal Evaporation Experiment of Autumn Brines from the Sodium Sulfate Subtype Zhabei Salt Lake in Tibet[J]. Acta Geoscientica Sinica, 2011, 32(4): 477–482

    CAS  Google Scholar 

  6. NIE Zhen, BU Lingzhong, ZHEN Mianping, ZHANG Yong-sheng. Phase Chemistry Study on Brine from the Zabuye Carbonate-Type Salt Lake in Tibet[J]. Acta Geologica Sinica, 2010, 84(14): 587–592

    CAS  Google Scholar 

  7. Ma Y, Zhang Z, Li K, Dong S, Fu Z & Hu T. Study on Li+ Enrichment Behavior of Sodium Sulfate in the Saline Lake Brine at Different Temperatures-as an Example Laguocuo Salt Lake Brines in Tibet[J]. Acta Geoscientica Sinica, 2016, 37(3): 307–312

    CAS  Google Scholar 

  8. China Blue Star Changsha Design and Research Institute. A Potassium Sulfate Mixture Is Extracted from Lithium Potassium Sulfate with Sodium Chloride Flotation Method of Potassium Lithium Sulfate in the Mixture[P]. China: CN 102921553 A, 2012-11-23

  9. Parmar H, Asada M, Kanazawa Y, Asakuma Y, Phan CM, Pareek V, Evans GM. In fluence of Microwaves on the Water Surface Tension[J]. Langmuir, 2014, 30: 9 875–9 879

    Article  CAS  Google Scholar 

  10. Park SW, Wake K, Watanabe S. Calculation Errors of the Electric Field Induced in Ahuman Body under Quasi-static Approximation Conditions[J]. IEEE Trans. Microwave Theory Tech., 2013, 61: 2 153–2 160

    Article  Google Scholar 

  11. Hirata A, Shiozawa T. Correlation of Maximum Temperature Increase and Peak SARinthe Human Head Due to Handset Antennas[J]. IEEE Trans. Microwave Theory Tech., 2003, 51: 1 834–1 841

    Article  Google Scholar 

  12. Gaiduk AP, Zhang C, Gygi F, Galli G. Structural and Electronic Properties of Aque-ous NaCl Solutions from ab Initio Molecular Dynamics Simulations with Hybrid Density Functionals[J]. Chem. Phys. Lett., 2014, 604: 89–96

    Article  CAS  Google Scholar 

  13. Zhou Min, Hu Ying, Liu Jianchuan, Cheng Ke, Jia Guo-zhu. Hydrogen Bonding and Transportation Properties of Water Confined in the Single-walled Carbon Nanotube in the Pulse-field[J]. Chemical Physics Letters, 2017, 686: 173–177

    Article  CAS  Google Scholar 

  14. Liu Y, Wang Q, Zhang L, Wu T. Dynamics and Density Profile of Water Innanotubes as One-dimensional Fluid[J]. Langmuir, 2005, 21: 12 025–12 030

    Article  CAS  Google Scholar 

  15. Chen Q, Wang Q, Liu YC, Wu T. The Effect of Hydrogen Bonds on Diffusion Mechanism of Water Inside Single-walled Carbon Nanotubes[J]. J. Chem. Phys., 2014, 140: 214507

    Article  Google Scholar 

  16. Tielrooij K, Van Der Post S, Hunger J, Bonn M, Bakker H. Anisotropic Water Reori-entation Around Ions[J]. J. Phys. Chem. B, 2011, 115: 12 638–12 647

    Article  CAS  Google Scholar 

  17. Tian W, Huang K. Animproved Experimental Set-up based on Ridged-Waveguide for Microwave Non-thermal Effects[J]. Instrum, 2011, 6: T02001

    Google Scholar 

  18. Hess B, Kutzner C, Van Der Spoel D & Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-balanced, and Scalable Molecular Simulation[J]. Journal of Chemical Theory and Computation, 2008, 4: 435–447

    Article  CAS  Google Scholar 

  19. Wang J, Wolf RM, Caldwell JW, Kollman PA & Case DA. DevelopMent and Testing of a General Amber Force Field[J]. Journal of Computational Chemistry, 2004, 25: 1 157–1 174

    Article  CAS  Google Scholar 

  20. Fox T & Kollman PA. Application of the RESP Methodology in the Parametrization of Organic Solvents[J]. The Journal of Physical Chemistry, 1998, B 102, 8 070–8 079

    Article  Google Scholar 

  21. Bayly CI, Cieplak P, Cornell W & Kollman PA. A Well-behaved Electrostatic Potential Based Method using Charge Restraints for Deriving Atomic Charges: The RESP Model[J]. The Journal of Physical Chemistry, 1993, 97: 10 269–10 280

    Article  CAS  Google Scholar 

  22. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A Smooth Particle Mesh Ewald Method[J]. J. Chem. Phys., 1995, 103(19):8 577–8 593

    Article  CAS  Google Scholar 

  23. Berendsen HJ, Postma JPM, Van Gunsteren WF, DiNola A, Haak J. Molecular Dynamics with Coupling to an External Bath[J]. J. Chem. Phys., 1984, 81: 3684

    Article  CAS  Google Scholar 

  24. Van Gunsteren WF, Berendsen H. A Leap-frog Algorithm for Stochastic Dynamics[J]. Mol. Simul., 1988, 1(3): 173–185

    Article  Google Scholar 

  25. Smoluchowski M Von. Zur Kinetischen Theorie Der Brownschen Molekularbewegung und Der Suspensionen[J]. Annalen Der Physik, 1906, 326: 756–780

    Article  Google Scholar 

  26. Desiraju GR, Steiner T. The Weak Hydrogen Bond: in Structural Chemistry and Biology[M]. Oxford University Press on Demand, 2001

  27. Ishwor Poudyal, Narayan P Adhikari. Temperature Dependence of Diffusion Coefficient of Carbon Monoxide in Water: A Molecular Dynamics Study[J]. Journal of Molecular Liquids, 2014, 194: 77–84

    Article  Google Scholar 

  28. LI Yasha, LIU Zhipeng, HUA Xu, DAI Yaping, SHEN Xingru. Molecular Dynamics Simulation on Diffusion Behaviors of Small Molecule Acids and Polymer Acids in Oils[J]. Journalof Insulating Material, 2018, 51(9)

  29. Migliorati V, Ballirano P, Gontrani L, et al. Crystal Polymorphism of Hexylammonium Chloride and Structural Properties of Its Mixtures with Water[J]. The Journal of Physical Chemistry B, 2012, 116(7): 2 104–2 113

    Article  CAS  Google Scholar 

  30. Kusalik PG, Bergman D, Laaksonen A. The Local Structure in Liquid Methylamine and Methylamine-water Mixtures[J]. J. Chem. Phys., 2000, 113(18): 8 036–8 046

    Article  CAS  Google Scholar 

  31. GR Desiraju, T Steiner. The Weak Hydrogen Bond, Structural Chemistryand Biology[J]. Oxford University Press on Demand, 2001

  32. Muñoz-Santiburcio D, Wittekindt C, Marx D. Nanoconfinement Effects on Hydrated Excess Protons in Layered Materials[J]. Nat. Commun, 2013, 4: 2 349

    Article  Google Scholar 

  33. Cadogan SP, Maitland GC, Trusler JPM. Diffusion Coefficients of CO2 and N2 in Water at Temperatures between 298.15 K and 423.15 K at Pressures up to 45 MPa[J]. J.Chem. Eng. Data, 2014, 59: 519–525

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianchuan Liu  (刘建川) or Kanshe Li  (李侃社).

Additional information

Funded by the Innovation Academy for Green Manufacture, CAS “IAGM2020C01”, the Key R&D and the Transformation Projects in Qinghai Province(2019-GX-167), CAS “Light of West China”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Liu, J., Li, K. et al. Lithium Behavior in Salt-water System Explored by Molecular Dynamics Simulation. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 1016–1020 (2020). https://doi.org/10.1007/s11595-020-2350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2350-1

Key words

Navigation