Skip to main content
Log in

Salt-washing Improvement of the Electrochemical Properties of Zeolite-sulfur Cathode for Lithium-sulfur Batteries

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

We displayed that the low-cost natural zeolite with molecular sieve structure can be used as the carrier of sulfur in lithium-sulfur batteries. Meanwhile, a simple salt-washing method was implemented on zeolite for dredging the internal microchannel to improve the ability of adsorption, ion exchange and sulfur loading. The experimental results show that the first specific discharge capacities of zeolite/S and salt-washed zeolite/S cathode under 0.2 C current density are 950.7 and 1 116.8 mAh/g, respectively, and corresponding discharge capacities remain at 350.6 and 604.2 mAh/g after 300 cycles. The first specific discharge capacity of salt-washed zeolite/S composite is 17.5% higher than that sample without salt-washing, and the corresponding ionic conductivity is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, et al. Li-O2 and Li-S Batteries with High Energy Storage[J]. NatureMaterials, 2012, 11(1): 19

    Article  CAS  Google Scholar 

  2. Ji X, Lee KT, Nazar LF. A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium-sulphur Batteries[J]. Nature Materials, 2009, 8(6): 500

    Article  CAS  Google Scholar 

  3. Huang C, Xiao J, Shao Y, et al. Manipulating Surface Reactions in Lithium-sulphur Batteries using Hybrid Anode Structures[J]. Nature Communications, 2014, 5: 3015

    Article  Google Scholar 

  4. Schuster J, He G, Mandlmeier B, et al. Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium-sulfur Batteries[J]. Angewandte Chemie International Edition, 2012, 51(15): 3 591–3 595

    Article  CAS  Google Scholar 

  5. Li Z, Zou Y, Duan J, et al. Coral-like Cop Hollow Composites as Effective Host Cathodes for Lithium-sulfur Batteries[J]. Ionics, 2019: 1–11

  6. Dörfler S, Hagen M, Althues H, et al. High Capacity Vertical Aligned Carbon Nanotube/Sulfur Composite Cathodes for Lithium-sulfur Batteries[J]. Chemical Communications, 2012, 48(34): 4 097–4 099

    Article  Google Scholar 

  7. Li Z, Zou Y, Duan J, et al. Long-cycle Stability for Li-S Batteries by Carbon Nanofibers/Reduced Graphene Oxide as Host Cathode Material[J]. Ionics, 2019: 1–10

  8. Wang JZ, Lu L, Chousair M, et al. Sulfur-graphene Composite for Rechargeable Lithium Batteries[J]. Journal of Power Sources, 2011, 196(16): 7 030–7 034

    Article  CAS  Google Scholar 

  9. Ji X, Evers S, Black R, et al. Stabilizing Lithium-sulphur Cathodes Using Polysulphide Reservoirs[J]. Nature Communications, 2011, 2: 325

    Article  Google Scholar 

  10. Hayashi H, Cote AP, Furukawa H, et al. Zeolite A Imidazolate Frameworks[J]. Nature Materials, 2007, 6(7): 50

    Article  Google Scholar 

  11. Kubů M, Žilková N, Zones SI, et al. Three-dimensional 10-Ring Zeolites: The Activities in Toluene Alkylation and Disproportionation[J]. Catalysis Today, 2016, 259: 97–106

    Article  Google Scholar 

  12. Fechete I, Wang Y, Védrine JC. The Past, Present and Future of Heterogeneous Catalysis[J]. Catalysis Today, 2012, 189(1): 2–27

    Article  CAS  Google Scholar 

  13. Baerlocher C, Mccusker LB, Olson DH. Atlas of Zeolite Framework Types[M]. Elsevier, 2007

  14. Blum Z. Utilization of Zeolite Y in the Removal of Anionic, Cationic and Nonionic Detergents during Purification of Proteins[J]. Biotechnology Techniques, 1991, 5(1): 49–54

    Article  CAS  Google Scholar 

  15. Masters AF, Maschmeyer T. Zeolites-From Curiosity to Cornerstone[J]. Microporous and Mesoporous Materials, 2011, 142(2–3): 423–438

    Article  CAS  Google Scholar 

  16. Nunes-Pereira J, Lopes AC, Costa CM, et al. Microporous Membranes of Nay Zeolite/Poly (Vinylidene Fluoridetrifluoroethylene) for Li-ion Battery Separators[J]. Journal of Electroanalytical Chemistry, 2013, 689: 223–232

    Article  CAS  Google Scholar 

  17. Yue Y, Guo B, Qiao ZA, et al. Multiwall Carbon Nanotube@ Zeolite Imidazolate Framework Composite from a Nanoscale Zinc Oxide Precursor[J]. Microporous and Mesoporous Materials, 2014, 198: 139–143

    Article  CAS  Google Scholar 

  18. Davis ME, Lobo RF. Zeolite and Molecular Sieve Synthesis[J]. Chemistry of Materials, 1992, 4(4): 756–768

    Article  CAS  Google Scholar 

  19. Perić J, Trgo M, Medvidović NV. Removal of Zinc, Copper and Lead by Natural Zeolite-A Comparison of Adsorption Isotherms[J]. Water research, 2004, 38(7): 1 893–1 899

    Article  Google Scholar 

  20. Ören AH, Kaya A. Factors Affecting Adsorption Characteristics of Zn2+ on Two Natural Zeolites[J]. Journal of Hazardous Materials, 2006, 131(1–3): 59–65

    Article  Google Scholar 

  21. Merrikhpour H, Jalali M. Comparative and Competitive Adsorption of Cadmium, Copper, Nickel, and Lead Ions by Iranian Natural Zeolite[J]. Clean Technologies and Environmental Policy, 2013, 15(2): 303–316

    Article  CAS  Google Scholar 

  22. Han R, Zhang J, Han P, et al. Study of Equilibrium, Kinetic and Thermodynamic Parameters about Methylene Blue Adsorption onto Natural Zeolite[J]. Chemical Engineering Journal, 2009, 145(3): 496–504

    Article  CAS  Google Scholar 

  23. Wajima T. Ion Exchange Properties of Japanese Natural Zeolites in Seawater[J]. Analytical Sciences, 2013, 29(1): 139–141

    Article  Google Scholar 

  24. Ćurković L, Cerjan-Stefanović Š, Filipan T. Metal Ion Exchange by Natural and Modified Zeolites[J]. Water Research, 1997, 31(6): 1 379–1 382

    Article  Google Scholar 

  25. Chen X, Wang Y, Wang Y, et al. Hierarchical High-porosity Graphene Oxide-porous Carbon/Sulfur Composite with Sodium Chloride as Temporary Space Holders for High-performance Lithium-sulfur Batteries[J]. Chem. Electro. Chem., 2019, 6(10): 2 667–2 674

    CAS  Google Scholar 

  26. Sukharenko VI, Usenko SI, Borisova LI, et al. Studying the Composition and Properties of Zeolitecontaining Rocks of Tatarshatrashane Occurrence[M]. Book of Abstracts, 2006: 226

  27. Ye H, Yin YX, Xin S, et al. Tuning the Porous Structure of Carbon Hosts for Loading Sulfur toward Long Lifespan Cathode Materials for Li-S Batteries[J]. Journal of Materials Chemistry A, 2013, 1(22): 6 602–6 608

    Article  CAS  Google Scholar 

  28. Wu Y, Xu C, Guo J, et al. Enhanced Electrochemical Performance by Wrapping Graphene on Carbon Nanotube/Sulfur Composites for Rechargeable Lithium-sulfur Batteries[J]. Materials Letters, 2014, 137: 277–280

    Article  CAS  Google Scholar 

  29. Li GC, Li GR, Ye SH, et al. A Polyaniline-coated Sulfur/Carbon Composite with an Enhanced High-rate Capability as a Cathode Material for Lithium/Sulfur Batteries[J]. Advanced Energy Materials, 2012, 2(10): 1 238–1 245

    Article  CAS  Google Scholar 

  30. Wang J, Liu L, Ling Z, et al. Polymer Lithium Cells with Sulfur Composites as Cathode Materials[J]. Electro. Chimica. Acta, 2003, 48(13): 1 861–1 867

    Article  CAS  Google Scholar 

  31. Wei Y, Yan Y, Zou Y, et al. The Ternary PANI@ BDC/S Composite Cathode with Enhanced Electrochemical Performance in Lithium-sulfur Batteries[J]. Journal of Electroanalytical Chemistry, 2019

  32. Lasia A. Electrochemical Impedance Spectroscopy and Its Applications[M]. Modern Aspects of Electrochemistry, 2002: 143–248

  33. Stoller MD, Ruoff RS. Best Practice Methods for Determining an Electrode Material’s Performance for Ultracapacitors[J]. Energy & Environmental Science, 2010, 3(9): 1 294–1 301

    Article  CAS  Google Scholar 

  34. Wang Y, Huang J, Chen X, et al. Powder Metallurgy Template Growth of 3D N-Doped Graphene Foam as Binder-free Cathode for High-performance Lithium/Sulfur Battery[J]. Carbon, 2018, 137: 368–378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhong Xie  (谢淑红) or Jun’an Pan  (潘俊安).

Additional information

Funded by the National Natural Science Foundation of China(Nos.11627801, 51772254, 11502225, and 51375017), and the Natural Science Foundation of Hunan Province of China(No.2019JJ50578)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Du, Z., Su, Y. et al. Salt-washing Improvement of the Electrochemical Properties of Zeolite-sulfur Cathode for Lithium-sulfur Batteries. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 665–670 (2020). https://doi.org/10.1007/s11595-020-2304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2304-7

Key words

Navigation