Skip to main content
Log in

Application of Bis[2-(3,4-epoxycyclohexyl)ethyl] octamethyltetrasiloxane in the Preparation of a Photosensitive Resin for Stereolithography 3D Printing

  • Organic material
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Bis[2-(3,4-epoxycyclohexyl)ethyl]octamethyltetrasiloxane is also called diepoxycyclohexylethyl octamethyltetrasiloxane. In the present paper, diepoxycyclohexylethyl octamethyltetrasiloxane was synthesized, and the synthesized product was characterized by FTIR and 1HMR. The synthesized product was compounded with some acrylates and an expoxide as well as photoinitiators to obtain a 3D printing stereolithography resin (3DSLR111). The properties of 3DSLR111 and its UV-cured samples were investigated by some instruments and equipments. The experimental results show that the critical exposure (Ec) of 3DSLR111 is 10.1 mJ/cm2, its penetration depth (Dp) is 0.15 mm, and its viscosity at 30 °C is 319 mPa·s. Some samples were printed with 3DSLR111, and their linear shrinkage and warping factor were evaluated. The linear shrinkage and the curl distortion factor are less than 0.80% and 7.30%, respectively, which indicates that the sample printed with 3DSLR111 has high accuracy, and that the synthesized diepoxycyclohexylethyl octamethyltetrasiloxane can be well applied to the preparation of the photosensitive resin for stereolithography 3D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIU Kang, ZHANG Xianglin, ZHOU Kui, et al. Scaffolds Prepared with Bovine Hydroxyapatite Composites by 3D Printing[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(1): 230–235

    Article  CAS  Google Scholar 

  2. Eckel ZC, Zhou C, Martin JH, Jacobsen AJ, Carter WB, Schaedler TA. 3D Printing Additive Manufacturing of Polymer-derived Ceramics[J]. Science, 2016, 351(6268): 58–62

    Article  CAS  Google Scholar 

  3. Nanya Li, Yingguang Li, Shuting Liu. Rapid Prototyping of Continu ous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing[J]. J. Mater. Process. Technol., 2016, 238: 218–225

    Article  Google Scholar 

  4. Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA, Pollock TM. 3D Printing of High-strength Aluminium Alloys[J]. Nature, 2017, 549(7672): 365–369

    Article  CAS  Google Scholar 

  5. DONG Lei, LUO Wei, WANG Junyuan, et al. Forming Mechanism and Morphology of CaSO4·H2O by SEM-EDS and ICP[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31(2): 274–277

    Article  CAS  Google Scholar 

  6. Marc Michela F, Donald Rimstidta J, Kletetschka Karel. 3D Printed Mixed Flow Reactor for Geochemical Rate Measurements[J]. Appl. Geochem., 2018, 89: 86–91

    Article  Google Scholar 

  7. Gu DD, Meiners W, Wissenbach K, Poprawe R. Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms[J]. Int. Mater. Rev., 2012, 57(3): 133–164

    Article  CAS  Google Scholar 

  8. Dmitry Gristenko, Alireza Ahmadian Yazdi, Yang Lin, et al. On characterrrrrization of separration force for resin replenishment enhancement in 3D printing[J]. Addit. Manuf., 2017, 17: 151–156

    Google Scholar 

  9. Xu Jie, Ding Lieyun, Peter ED Love. Digital Reproduction of Historical Building Omamental Components: From 3D Scanning to 3D Printing[J]. Automat. Constr., 2017, 76: 85–96

    Article  Google Scholar 

  10. Ferry PW, Jan F, Dirk WG. A Review on Stereolithography and Its Applications in Biomedical Engineering[J]. Biomaterials, 2010, 31: 6 121–6 130

    Article  Google Scholar 

  11. UI Hassan Rizwan, Jo Soohwan, Seok Jongwon. Fabrication of A Functionally Graded and Magnetically Responsive Shape Memory Polymer Using A 3D Printing Technique and Its Characterization[J]. J. Appl. Polym. Sci., 2018, 135 (11): 45 997–46 002

    Article  Google Scholar 

  12. Huang Tienchi, Lin Chunyu. From 3D Modeling to 3D Printing: Development of a Differentiated Spatial Ability Teaching Model[J]. Telem. Inform., 2018, 34: 604–613

    Article  Google Scholar 

  13. Zeng Y, Yan Y, Yan H, et al. 3D Printing of Hydroxyapatite Scaffolds with Good Mechanical and Biocompatible Properties by Digital Light Processing[J]. J. Mater. Sci., 2018, 53(9): 6 291–6 301

    Article  CAS  Google Scholar 

  14. Karim MN, Afroj S, Rigout M, et al. Towards UV-curable Inkjet Printing of Biodegradable Poly(lacticacid) Fabrics[J]. J. Mater. Sci., 2015, 50(13): 4 576–4 585

    Article  CAS  Google Scholar 

  15. Ming L, Yang H, Zhang W, et al. Selective Laser Sintering of TiO2 Nanoparticle Film on Plastic Conductive Substrate for Highly Efficient Flexible Dye-sensitized Solar Cell Application[J]. J. Mater. Chem. A, 2014, 2(13): 4 566–4 573

    Article  CAS  Google Scholar 

  16. HUANG Biwu, DU, ZHIPENG, YONG Tao, et al. Preparation of A Novel Hybrid Type Photosensitive Resin for Stereolithography in 3D Printing and Testing on the Accuracy of the Fabricated Parts[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32(3): 726–732

    Article  CAS  Google Scholar 

  17. Chakraborty P, Zhou C, Chung DDL. Piezoelectric Behavior of Three-dimensionally Printed Acrylate Polymer without Filler or Poling[J]. J. Mater. Sci., 2018, 53(9): 6 819–6 830

    Article  CAS  Google Scholar 

  18. Weng Zixiang, Zhou Yu, Lin Wenxiong, et al. Structure-property Relationship of Nano Enhanced Stereolithography Resin for Desktop SLA 3D printer[J]. Compos. Part A., 2016, 38: 234–242

    Article  Google Scholar 

  19. Lurie SA, Solyaev YO, Rabinskiy LN, Polyakov PO, Sevostianov I. Mechanical Behavior of Porous Si3N4 Ceramics Manufactured with 3D Printing Technology[J]. J. Mater. Sci., 2018, 53(7): 4 796–4 805

    Article  CAS  Google Scholar 

  20. Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R. Three-dimensional Photopatterning of Hydrogels Using Stereolithography for Long-term Cell Encapsulation[J]. Lab. Chip., 2010, 10(16): 2 062–2 070

    Article  CAS  Google Scholar 

  21. Park S, Lee DH, Ryoo HI, et al. Fabrication of Three-dimensional SiC Ceramic Microstructures with Near-zero Shrinkage via Dual Crosslinking Induced Stereolithography[J]. Chem. Commun., 2009, 32: 4 880–4 882

    Article  Google Scholar 

  22. Kim Yechan, Hong Sungyong, Nam Jaedo, et al. UV Curing Kinetics and Performance Development of in situ Curable 3D Printing Material[J]. Eur. Polym. J., 2017, 93: 140–147

    Article  CAS  Google Scholar 

  23. Zhao TT, Li XP, Yu R, et al. Silicone-epoxy-based Hybrid Photopolymers for 3D Printing[J]. Macromol. Chem. Phys., 2018, 219: 1 700 530–1 700 540

    Article  Google Scholar 

  24. Winfield RJ, O’Brien S. Two-photon Polymerization of An Epoxy-acrylate Resin Material System[J]. Appl. Surf. Sci., 2011, 257(12): 5 389–5 392

    Article  CAS  Google Scholar 

  25. Sun F, Jiang SL, Liu J. Study on Cationic Photopolymerization Reaction of Epoxy Polysiloxane[J]. Nucl. Instr. and Meth. in Phys. Res. B., 2007, 264: 318–322

    Article  CAS  Google Scholar 

  26. Putzien S, Louis E, Nuyken O, et al. UV Curing of Epoxy Functional Hybrid Silicones[J]. J. Appl. Poly. Sci., 2012, 126(4): 1 188–1 197

    Article  CAS  Google Scholar 

  27. Jang M, Crivello JV. Synthesis and Cationic Photopolymerization of Epoxy-functional Siloxane Monomers and Oligomers[J]. J. Polym. Sci. Polym. Chem., 2003, 41(19): 3 056–3 073

    Article  CAS  Google Scholar 

  28. Crivello JV, Song KY, Choshal R. Synthesis and Photoinitiated Cationic Polymerization of Organic-inorganic Hybrid Resins[J]. Chem. Mater., 2001, 13(5): 1 932–1 942

    Article  CAS  Google Scholar 

  29. Crivello JV, Lee JL. The Synthesis, Characterization, and Photoinitiated Cationic Polymerization of Silicon-containing Epoxy-resins[J]. J. Polym. Sci. Polym. Chem., 1990, 28(3): 479–503

    Article  CAS  Google Scholar 

  30. Crivello JV, Mao ZB. Synthesis of Novel Multifunctional Siloxane Oligomers Using Sol-gel Techniques and Their Photoinitiated Cationic Polymerization[J]. Chem. Mater., 1997, 9(7): 1 554–1 561

    Article  CAS  Google Scholar 

  31. Cheah CM, Nee AYC, Fuh JYH, et al. Characteristics of Photopolymeric Material Used in Rapid Prototypes[J]. J. Mater. Process. Tech., 1997, 67: 41–45

    Article  Google Scholar 

  32. Winfield RJ, O’Brien S. Two-photon Polymerization of An Epoxy-acrylate Resin Material System[J]. Appl. Surf. Sci., 2011, 257(12): 5 389–5 392

    Article  CAS  Google Scholar 

  33. Golaz B, Michaud V, Leterrier YY, et al. UV Intensity, Temperature and Dark-curing Effects in Cationic Photo-polymerization of A Cycloaliphatic Epoxy Resin[J]. Polym., 2012, 53: 2 038–2 048

    Article  CAS  Google Scholar 

  34. Voytekunas Vanda Yu, Ng FL, Abadie Mara JM. Abadie Mara Kinetics Study of the UV-initiated Cationic Polymerization of Cycloaliphatic Diepoxide Resin[J]. Eur. Polym. J., 2008, 44: 3 640–3 649

    Article  Google Scholar 

  35. Salmoria GV, Ahrens CH, Beal VE, et al. Evaluation of Post-curing and Laser Manufacturing Parameters on the Properties of SOMOS 7110 Photopolymer Used in Stereolithography[J]. Mater. Des., 2009, 30: 758–763

    Article  CAS  Google Scholar 

  36. Wang L, Cheah CM, Fuh JYH, et al. Influence of Process Parameters on Stereolithography Part Shrinkage[J]. Mater. Des., 1996, 17(4): 205–213

    Article  CAS  Google Scholar 

  37. Huang YM, Lan HY. Dynamic Reverse Compensation to Increase the Accuracy of the Rapid Prototyping System[J]. J. Mater. Process. Tech., 2005, 167: 169–176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biwu Huang  (黄笔武).

Additional information

Funded by the National Natural Science Foundation of China (No. 51563017)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Han, L., Wu, B. et al. Application of Bis[2-(3,4-epoxycyclohexyl)ethyl] octamethyltetrasiloxane in the Preparation of a Photosensitive Resin for Stereolithography 3D Printing. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 1470–1478 (2019). https://doi.org/10.1007/s11595-019-2215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2215-7

Key words

Navigation