Skip to main content
Log in

Influence Mechanism of Sulfide Ions during Manganese Electrodeposition

  • Metallic material
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Influence mechanism of sulfide ions (S2-) during manganese electrodeposition from sulphate electrolyte was investigated. Under the experimental conditions, S2- ion concentration and electrolyte pH represented significant multiple effects on the cathode current efficiency. Scanning electron microscope (SEM) indicated that electrodeposition manganese layer (EML) became refinement as S2- ion concentration was increased. X-ray Diffraction (XRD) displayed that S2- ion had negligible influence on the preferred orientation of the crystalline layer of the EML. S2- ion had no influence on the chemical composition of EML. S2- ion could improve the corrosion resistance of EML. The interaction mechanism of S2- ion with manganese electrodeposition was systematically explored by analysing E-pH diagram, cyclic voltammetry curve, cathode polarization curve and electrochemical impedance method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xing MW, Kong J, Dong J, et al. Thiophenic Sulfur Compounds Released During Coal Pyrolysis[J]. Environ. Eng. Sci., 2013, 30(6): 273–279

    Article  CAS  Google Scholar 

  2. Ling YC, Liao JH. Matrix Effect on Supercritical Fluid Extraction of Organo Chlorine Pesticides from Sulfur-containing Soils[J]. J. Chromatogr. A, 1996, 754: 285–294

    Article  CAS  Google Scholar 

  3. Taheri B, Abdollahy M, Tonkaboni SZS, et al. Dual Effects of Sodium Sulfide on the Flotation Behavior of Chalcopyrite: I. Effect of Pulp Potential[J]. Int. J. Min. Met. Mater., 2014, 21(5): 415–422

    Article  CAS  Google Scholar 

  4. Salum MJG, Araujo AC de, Peres, AEC. The Role of Sodium Sulphide in Amine Flotation of Silicate Zinc Minerals[J]. Min. Eng., 1992, 5(3): 411–419

    Article  CAS  Google Scholar 

  5. Poorkani M, Banisi S. Industrial Use of Nitrogen in Flotation of Molybdenite at the Sarcheshmeh Copper Complex[J]. Min. Eng., 2005, 18(7): 735–738

    Article  CAS  Google Scholar 

  6. Hu YH, Sun W, Wang DZ. Electrochemistry of Flotation of Sulphide Minerals[M]. Beijing: Tsinghua University Press, 2009

    Book  Google Scholar 

  7. Zhao Q, Liu WG, Wei DZ, et al. Effect of Copper Ions on the Flotation Separation of Chalcopyrite and Molybdenite Using Sodium Sulfide as a Depressant[J]. Min. Eng., 2018, 115: 44–52

    Article  CAS  Google Scholar 

  8. Jandova J, Lisa K, Vu H, et al. Separation of Copper and Cobalt-nickel Sulfide Concentrates during Processing of Manganese Deep Ocean Nodules[J]. Hydrometallurgy, 2005, 77: 75–79

    Article  CAS  Google Scholar 

  9. Yan S, Qiu YR. Preparation of Electronic Grade Manganese Sulfate from Leaching Solution of Ferromanganese Slag[J]. T. Nonferr. Metal. Soc., 2014, 24(11): 3 716–3 721

    Article  CAS  Google Scholar 

  10. Ye MY, Yan PF, Ren J, et al. Removal of Metals from Lead-zinc Mine Tailings Using Bioleaching and Followed by Sulfde Precipitation[J]. Chemosphere, 2017, 185: 1 189–1 196

    Article  CAS  Google Scholar 

  11. Lu JM, Dreisinger DB, Glückb T. Manganese Electrodeposition-A Literature Review[J]. Hydrometallurgy, 2014, 141: 105–116

    Article  CAS  Google Scholar 

  12. Araujo JAM, Castro MMR, Lins VDFC. Reuse of Furnace Fines of Ferro Alloy in the Electrolytic Manganese Production[J]. Hydrometallurgy, 2006, 84: 204–210

    Article  Google Scholar 

  13. Ding LF, Fan X, Du J, et al. Influence of Three N-based Auxiliary Additives during the Electrodeposition of Manganese[J]. Int. J. Min. Met. Mater., 2014, 130: 34–41

    CAS  Google Scholar 

  14. Padhy SK, Patnaik P, Tripathy BC, et al. Electrodeposition of Manganese Metal from Sulphate Solutions in the Presence of Sodium Octyl sulphate[J]. Hydrometallurgy, 2016, 165: 73–80

    Article  CAS  Google Scholar 

  15. Lu JM, Dreisinger DB, Glückb T. Electrolytic Manganese Metal Production from Manganese Carbonate Precipitate[J]. Hydrometallurgy, 2016, 161: 45–53

    Article  CAS  Google Scholar 

  16. Wei QF, Ren XL, Du J, et al. Study of the Electrodeposition Conditions of Metallic Manganese in an Electrolytic Membrane Reactor[J]. Min. Eng., 2010, 23: 578–586

    Article  CAS  Google Scholar 

  17. Xu FY, Dan ZG, Zhao WN, et al. Electrochemical Analysis of Manganese Electrodeposition and Hydrogen Evolution from Pure Aqueous Sulfate Electrolytes with Addition of SeO2[J]. J. Electroanal. Chem., 2015, 741: 149–156

    Article  CAS  Google Scholar 

  18. Xue JR, Wang S, Zhong H, et al. Influence of Sodium Silicate on Manganese Electrodeposition in Sulfate Solution[J]. T. Nonferr. Metal. Soc., 2016, 26: 1 126–1 137

    Article  CAS  Google Scholar 

  19. Suh MS, Park CJ, Kwon HS. Effects of Plating Parameters on Alloy Composition and Microstructure of Sn-Bi Electrodeposits from Methane Sulphonate Bath[J]. Surf. Coat. Tech., 2006, 200: 3 527–3 532

    Article  CAS  Google Scholar 

  20. Fan X, Xi SY, Sun DG, et al. Mn-Se Interactions at the Cathode Interface during the Electrolytic-manganese Process[J]. Hydrometallurgy, 2012, 127: 24–29

    Article  Google Scholar 

  21. YB/T 051-2015. Electrolytic Manganese Metal-Black Metallurgical Industry Grade Standard in China[S], 2015

    Google Scholar 

  22. Song WM, Yang GR, Liao BB, et al. Effect of Cl− Concentration on the Corrosion Behavior of 16Mn Steel in Saturated H2S/CO2 Solution[J]. J.Wuhan Univ. Technol., 2018, 33(5): 1 205–1 215

    Article  CAS  Google Scholar 

  23. Kan HM, Feng XJ, Wei XD, et al. Effects of Surfactants SDS and CTAB on Ni-SiC Deposition[J]. J.Wuhan Univ. Technol., 2018, 33(4): 836–842

    Article  CAS  Google Scholar 

  24. Parada F, Jeffrey MI, Asselin E. Leaching Kinetics of Enargite in Alkaline Sodium Sulphide Solutions[J]. Hydrometallurgy, 2014, 146: 48–58

    Article  CAS  Google Scholar 

  25. Li WF, Zhou YJ, Xue Y. Corrosion Behavior About Tubing Steel in Environment with High H2S and CO2 Content[J]. J.Wuhan Univ. Technol., 2013, 28(5): 1 038–1 043

    Article  Google Scholar 

  26. Xue JR, Wang S, Zhong H, et al. Influence of Sodium Oleate on Manganese Electrodeposition in Sulfate Solution[J]. Hydrometallurgy, 2016, 160: 115–122

    Article  CAS  Google Scholar 

  27. Feng QC, Wen SM, Zhao WJ, et al. Adsorption of Sulfide Ions on Cerussite Surfaces and Implications for Flotation[J]. App. Surf. Sci., 2016,: 365–372

  28. Lai YQ, Liu FY, Li J, et al. Nucleation and Growth of Selenium Electrodeposition onto Tin Oxide Electrode[J]. J. Electroanal. Chem., 2010, 639: 187–192

    Article  CAS  Google Scholar 

  29. De Oliveira EM, Carlos IA. Voltammetric and Morphological Characterization of Zinc Electrodeposition from Acid Electrolytes Containing Boric-polyalcohol Complexes[J]. J. Appl. Electrochem., 2008, 38: 1 203–1 210

    Article  CAS  Google Scholar 

  30. Hosseini S, Kheawhom S, Soltani SM, et al. Electrochemical Reduction of Bicarbonate on Carbon Nanotube-supported Silver Oxide: An Electrochemical Impedance Spectroscopy Study[J]. J. Environ. Chem. Eng., 2018, 6: 1 033–1 043

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianrong Xue  (薛建荣).

Additional information

Funded partly by the National Natural Science Foundation of China (No. 21376273), the National Science and Technology Support Program of China(No. 2015BAB17B01), and the Open Research Fund of Hunan Provincial Science and the Technology Plan Project (No. MN2017K05), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Zhong, H., Wang, S. et al. Influence Mechanism of Sulfide Ions during Manganese Electrodeposition. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 1451–1459 (2019). https://doi.org/10.1007/s11595-019-2212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2212-x

Key words

Navigation