Skip to main content
Log in

Synthesis of Organic Modified SiCw/PVDF Composite Membrane and Its Dielectric Properties under Low Temperature

  • Advanced material
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Cetyltrimethylammonium bromide (CTAB) was incorporated into silicon carbide whiskers (SiCw) to improve their hydrophobicity. The solution casting method was employed to develop composite membranes of polyvinylidene fluoride (CTAB-SiCw/PVDF) with different feed ratios. FT-IR spectroscopic studies proved that CTAB was successfully incorporated into the SiCw. SiCw phase structure was maintained after modification by CTAB according to XRD results. SEM studies indicated that the surface became smoother with CTAB dispersal in the PVDF membrane. The dielectric properties of the composite membranes containing various amounts of CTAB-SiCw were measured at low temperature. It was found that the dielectric constant of the composite membranes with 13.0wt% whiskers reached a maximum value of 25 at low frequency, and decreased to nine at high frequency (from 500 Hz to 1 MHz ) at 0 ℃. The dielectric loss of each composite membrane increased with increasing temperature and reached a maximum value. The value shifted with corresponding frequency increases. In addition, the dielectric loss reached a maximum value of 0.2 when 16.7wt% of CTAB-SiCw was fed at each frequency (from -30 ℃ to 10 ℃). At room temperature, the dielectric constant could be maintained at 42 and the loss factor decreased to 0.8 at 100 Hz when 13.0wt% of CTABSiCw was incorporated. Additionally, TGA experiments indicated that the decomposition temperature of a PVDF membrane was increased by 10 ℃ and its heat resistance was improved by adding 13.0wt% of CTAB-SiCw. This PVDF composite membrane has potential for use as an insulator and capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiong X, Moon KS, Kim BK, et al. High Dielectric Constant Polyaniline/ epoxy Composites Via In-situ Polymerization for Embedded Capacitor Applications[J]. Polymer, 2007, 48: 1 510–1 516

    Article  CAS  Google Scholar 

  2. Gill E, Arshak A, Arshak K, et al. Response Mechanism of Novel Polyaniline Composite Conductimetric pH Sensors and the Effects of Polymer Binder, Surfactant and Film Thickness on Sensor Sensitivity[J]. Eur. Polym. J., 2010, 46: 2 042–2 050

  3. Gao J, Sansiena JM, Wang HL. Chemical Vapor Driven Polyaniline Sensor/actuators[J]. Synth. Met., 2003, 135: 809–810

    Article  CAS  Google Scholar 

  4. Yoseph BC, Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential and Challenges[M]. SPIE Press, 2004

    Google Scholar 

  5. Nohria R, Khillan RK, Su Y, et al. Humidity Sensor Based on Ultrathin Polyaniline Film Deposited Using Layer-by-Layer Nanoassembly[J]. Sens. Actuators, B: Chem., 2006, 114: 218–222

    Article  CAS  Google Scholar 

  6. Sohi NJS, Rahaman M, Khastgir D. Dielectric Property and Electromagnetic Interference Shielding Effectiveness of Ethylene Vinyl Acetate Based Conductive Composites: Effect of Different Type of Carbon Fillers[J].Polym. Compos., 2011, 32: 1 148–1 154

    Article  CAS  Google Scholar 

  7. Liang XW, Wang GC, Li XX, et al. Surface Properties of Polyaniline/ nano-TiO2 Composites[J]. Applied Surface Science, 2004, 229:395–401

    Article  CAS  Google Scholar 

  8. Arup RP, Bimal KS, Nirab CA, et al. TiO2/Polyaniline Nanocomposite Films Prepared by Magnetron Sputtering Combined with Plasma Polymerization Process[J]. Applied Surface Science, 2011, 258: 1 199–1 205

    Article  CAS  Google Scholar 

  9. Wu PX, Wu HH, Li R. The Microstructural Study of Thermal Treatment Montmorillonite[J]. Spectrochimica Acta Part A, 2005, 61: 3 020–3 025

    Article  CAS  Google Scholar 

  10. Vijatović Petrović M M, Bobić J D, Ramoška T, et al. Electrical Properties of Lanthanum Doped Barium Titanate Ceramics[J]. Materials Characterization, 2011, 62: 1 000–1 006

    Article  CAS  Google Scholar 

  11. Cai W, Fu CL, Lin ZB, et al. Vanadium Doping Effects on Microstructure and Dielectric Pproperties of Barium Titanate Ceramics[J]. Ceramics International, 2011, 37: 3 643–3 650

    Article  CAS  Google Scholar 

  12. Xu J, Wong CP. Characterization and Properties of an Organic-inorganic Dielectric Nanocomposite for Embedded Decoupling Capacitor Applications[J]. Compos. Part A-Appl. Sci., 2007, 38(1): 13–9

    Article  CAS  Google Scholar 

  13. Ioannou G, Patsidis A, Psarras GC. Dielectric and Functional Properties of Polymer Matrix/ZnO/BaTiO3 Hybrid Composites[J]. Compos. Part A-Appl. Sci., 2011, 42(1): 104–110

    Article  CAS  Google Scholar 

  14. Sun LL, Li B, Zhao Y, et al. Structure-induced High Dielectric Constant and Low Loss of CNF/PVDF Composites with Heterogeneous CNF Distribution[J]. Nanotechnology, 2010, 21(30): 305 702–305 708

    Article  CAS  Google Scholar 

  15. Campos, José Marcello Salabert de, Calderano CDA, et al. Embriogênese somática em híbridos de Pennisetum sp. e avaliação de estabilidade genômica por citometria[J]. Pesquisa Agropecuária Brasileira, 2009, 44(1): 38–44

    Article  Google Scholar 

  16. Wang M, Shi JH, Pramoda KP, et al. Microstructure, Crystallization and Dynamic Mechanical Behaviour of Poly(vinylidene fluoride) Composites Containing Poly(methyl methacrylate)-grafted Multiwalled Carbon Nanotubes[J]. Nanotechnology, 2007, 18(23): 235 701–235 709

    Article  CAS  Google Scholar 

  17. Tawansi A, Oraby AH, Abdelkader HI, et al. FeCl3-CoCl2, Mixed Fillers Effects on the Structural, Electrical and Magnetic Properties of PVDF Films[J]. Journal of Magnetism & Magnetic Materials, 2003, 262(2): 203–211

    Article  CAS  Google Scholar 

  18. Belouadah R, Kendil D, Bousbiat E, et al. Electrical Properties of Two-dimensional Thin Films of the Ferroelectric Material Polyvinylidene Fluoride as a Function of Electric Field[J]. Physica B: Condensed Matter, 2009, 404(12–13): 1 746–1 751

    Article  CAS  Google Scholar 

  19. Sessler GM. Piezoelectricity in Polyvinylidenefluoride[J]. Journal of the Acoustical Society of America, 1981, 70(6): 1 596–1 608

    Article  CAS  Google Scholar 

  20. Konishi Y, Cakmak M. Nanoparticle Induced Network Self-assembly in Polymer-carbon Black Composites[J]. Polymer, 2006, 47(15): 5 371–5 391

    Article  CAS  Google Scholar 

  21. Korostynska O, Arshak K, Morris D, et al. Radiationinduced Changes in the Electrical Properties of Carbon Filled PVDF Thick Films[J]. Mat. Sci. Eng. B, 2007, 141(3): 115–120

    Article  CAS  Google Scholar 

  22. Xu HP, Dang ZM. Electrical Property and Microstructure Analysis of Poly(vinylidene fluoride)-based Composites with Different Conducting Fillers[J]. Chem. Phys. Lett., 2007, 438(4–6): 196–202

    Article  CAS  Google Scholar 

  23. Li YJ, Xu M, Feng JQ, et al. Dielectric Behavior of a Metal-polymer Composite with Low Percolation Threshold[J]. Appl. Phys. Lett., 2006, 89(7): 072902–5

    Article  CAS  Google Scholar 

  24. Jiang SL, Yu U, Xie JJ, et al. Positive Temperature Coefficient Properties of Multiwall Carbon Nanotubes/ Poly(vinylidene fluoride) Nanocomposites[J]. J. Appl. Polym. Sci., 2010, 116(2): 838–842

    CAS  Google Scholar 

  25. Sun LL, Bin L, Zhang ZG, et al. Achieving Very High Fraction of b-crystal PVDF and PVDF/CNF Composites and Their Effect on Ac conductivity and Microstructure Through a Stretching Process[J]. Eur. Polym. J., 2010, 46: 2 112–2 119

    Article  CAS  Google Scholar 

  26. Sun LL, Bin L, Zhao Y, et al. Suppression of AC Conductivity by Crystalline Transformation in poly(vinylidene fluoride)/Carbon Nanofiber Composites[J]. Polymer, 2010, 51(14): 3 230–3 237

    Article  CAS  Google Scholar 

  27. Costa P, Silva J, Sencadas V, et al. The Effect of Fibre Concentration on the a to b-phase Transformation, Degree of Crystallinity and Electrical Properties of Vapour Grown Carbon Nanofibre/Poly(vinylidene fluoride) Composites[J]. Carbon, 2009, 47(11): 2 590–2 599

    Article  CAS  Google Scholar 

  28. Avella M, Martuscelli E, Raimo M, et al. Polypropylene Reinforced with Silicon Carbide Whiskers[J]. Journal of Materials Science, 1997, 32(9): 2 411–2 416

    Article  CAS  Google Scholar 

  29. Gu J, Zhang Q, Tang Y, et al. Studies on the Preparation and Effect of the Mechanical Properties of Titanate Coupling Reagent Modified β-SiC Whisker Filled Celluloid Nano-composites[J]. Surface & Coatings Technology, 2008, 202(13): 2 891–2 896

    Article  CAS  Google Scholar 

  30. Cao JP, Zhao J, Zhao XD, et al. Preparation and Characterization of Surface Modified Silicon Carbide/Polystyrene Nanocomposites[J]. J. Appl. Polym. Sci., 2013, 130(1): 638–644

    Article  CAS  Google Scholar 

  31. Yuan JK, Li WL, Yao SH, et al. High Dielectric Permittivity and Low Percolation Threshold in Polymer Composites Based on SiC-carbon Nanotubes Micro/Nano Hybrid[J]. Appl. Phys. Lett., 2011, 98(3)

    Google Scholar 

  32. Ling LW, Wu WB, Jiang DL, et al. Dispersion and Rheology of SiC Whisker in Mullite Slurry[J]. Journal of Inorganic Materials., 2001, 16(6): 1 084–1 088

    CAS  Google Scholar 

  33. O’Sullivan TP, Taylor S E. Dispersion of Silicon Carbide Whiskers and Powders in Aqueous and Non-aqueous Media[J]. Journal of Materials Chemistry, 1991, 1(3): 393–399

    Article  Google Scholar 

  34. Luo WW and Huang Y. Study on SiC Whisker Dispersion Process and Densification of SiC Whisker/Y-TZP Composites[J]. China Build. Mater. Academy(in Chinese), 1990, 2: 1–10

    Google Scholar 

  35. Luo WW and Huang Y. Study on SiC Whisker Dispersion Process for Reinforced Ceramic Matrix Composites[J]. Bull. Chin. Ceram. Soc.(in Chinese), 1990, 2: 9–13

    Google Scholar 

  36. Kuang X. Study on PVDF Based Dielectric Composite Films(in Chinese)[D]. Beijing University of Chemical Technology, 2013

    Google Scholar 

  37. Xiong K, Guangliang XU, Songtao LI, et al. DISPERSION STABILITY OF SILICON CARBIDE WHISKER[J]. Journal of the Chinese Ceramic Society, 2008, 36(10): 1 432–1 436

    CAS  Google Scholar 

  38. Shi XN, Wang WB, Wang AQ. Effect of Surfactant on Porosity and Swelling Behaviors of Guar Gum-g-poly (sodium acrylate-co-styrene)/Attapulgite Superabsorbent Hydrogels[J]. Colloids and Surfaces B: Biointerfaces, 2011, 88(1): 279–286

    Article  CAS  Google Scholar 

  39. Li X. Preparation of SiC Whiskers from Binary Carbonaceous-Silica Xerogel and Aerogel[J]. Bulletin of The Chinese Ceramic Society, 2000, 5(78): 47–52

    Google Scholar 

  40. Fu MR, Liu K, Li Moghareh. Preparation and Characterization of poly(vinylidenefluoride)(PVDF) Based Ultrafiltration Membranes Using NanoAl2O3[J], J. Membr. Sci., 2011, 168: 1 272–1 278

    Google Scholar 

  41. hang Z, Gu Y, Wang S, et al. Enhancement of Dielectric and Electrical Properties in BT/SiC/PVDF Three-phase Composite Through Microstructure Tailoring[J]. Composites Part A: Applied Science & Manufacturing, 2015, 74: 88–95

    Article  CAS  Google Scholar 

  42. Lin YJ, Tsang CP. The Effects of Starting Precursors on the Carbothermal Synthesis of SiC Powders[J]. Ceramics International, 2003, 29(1): 69–75

    Article  CAS  Google Scholar 

  43. Mohammadi B, Yousefi AA, Bellah SM. Effect of Tensile Strain Rate and Elongation on Crystalline Structure and Piezoelectric Properties of PVDF Thin Films[J]. Polymer Testing, 2007, 26(1): 42–50

    Article  CAS  Google Scholar 

  44. Tsangaris GM, Psarras GC, Kouloumbi N. Electric Modulus and Interfacial Polarization in Composite Polymeric Systems[J]. J. Mater. Sci., 1998, 33(8): 2 027–2 037

    Article  CAS  Google Scholar 

  45. Agrawal A, Satapathy A. Effects of Aluminium Nitride Inclusions on Thermal and Electrical Properties of Epoxy and Polypropylene: an Experimental Investigation[J]. Compos. Part A–Appl. Sci., 2014; 63: 51–8

    Article  CAS  Google Scholar 

  46. Kim JY, Kim T, Suk JW, et al. Enhanced Dielectric Performance in Polymer Composite Films with Carbon Nanotube-reduced Graphene Oxide Hybrid Filler[J]. Small, 2014, 10(16): 3 405–3 411

    Article  CAS  Google Scholar 

  47. Xu J H. Polymer Dlelectrics For Energy Storage[M]. The Science Publishing Company (in Chinese) (2014)

    Google Scholar 

  48. Li Y, Huang XY, Hu ZW, et al. Large Dielectric Constant and High Thermal Conductivity in Poly(vinylidene fluoride)/Barium Titanate/Silicon Carbide Three-phase Nanocomposites[J]. Appl. Mater. Inter., 2011, 3(11): 4 396–4 403

    Article  CAS  Google Scholar 

  49. Gooch J W. Debye Equation[M]. Springer New York, 2011

    Book  Google Scholar 

  50. Botelho G, Lanceros-Mendez S, Gonçalves AM, et al. Relationship between Processing Conditions, Defects and Thermal Degradation of poly(vinylidene fluoride) in the β-phase[J]. Journal of Non-Crystalline Solids, 2008, 354(1): 72–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by university funding for select science and technology students while studying abroad in Shaanxi province in 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiping Lei  (雷西萍).

Additional information

Funded by the “Supercapacitor Electrode Material Design and Application” Team Construction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Yu, T., Han, D. et al. Synthesis of Organic Modified SiCw/PVDF Composite Membrane and Its Dielectric Properties under Low Temperature. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 1279–1287 (2019). https://doi.org/10.1007/s11595-019-2190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2190-z

Key words

Navigation