Skip to main content
Log in

Mechanical Properties and Microstructure of CaSO4 Whisker Reinforced Cement Mortar

  • Cementitious materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Calcium sulfate whisker (CaSO4 whiskers), a new type of microfiber material, was used in cement matrix to increase the strength of the cement based composites. Effect of CaSO4 whiskers on the mechanical properties of the resulting cement mortar was also studied. The results showed that the flexural strength and compressive strength of the mortar specimen was improved as high as 28.3% and 8.5% by incorporating 5 wt% CaSO4 whiskers. Also, the chemical composition and structural transformation of the hardened cement matrix with CaSO4 whiskers were identified by X-ray diffraction (XRD) and scanning electron microscope (SEM). Conclusion can be drawn that CaSO4 whiskers can effectively retard the formation and restrict the coalescence of micro-crack expansion. The interaction mechanism of CaSO4 whisker on the reinforcement is mainly on three aspects: whisker pullout, crack deflection, and crack bridging. Mercury intrusion porosimetry (MIP) tests have confirmed that for 28 d cement mortar, the harmless pores increased from 9.33% to 10.62%, and the harmful pores decreased from 2.08% to 1.90%. Therefore, the whisker can optimize the pore size distribution of the resulting cement mortar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dawood E T, Ramli M. Development of High Strength Flowable Mortar with Hybrid Fiber[J]. Constr. Build. Mater., 2010, 24: 1 043–1 050

    Article  Google Scholar 

  2. Park S H, Kim D J, Ryu G S, et al. Tensile Behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete[J].Cem. Concr. Comp., 2012, 34: 172–184

    Article  CAS  Google Scholar 

  3. Cao M, Zhang C, Wei J. Microscopic Reinforcement for Cement Based Composite Materials[J]. Constr. Build. Mater., 2013, 40: 14–25

    Article  Google Scholar 

  4. Cao M, Zhang C, Lv H, et al. Characterization of Mechanical Behavior and Mechanism of Calcium Carbonate Whisker-reinforced Cement Mortar[J]. Constr. Build. Mater., 2014, 66: 89–97

    Article  Google Scholar 

  5. Cao M, Wei J. Microstructure and Mechanical Properties of CaCO3 Whisker-reinforced Cement[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26: 1 004–1 009

    Article  CAS  Google Scholar 

  6. Sanchez F, Sobolev K. Nanotechnology in Concrete-a Review[J]. Con-str. Build. Mater., 2010, 24: 2 060–2 071

    Article  Google Scholar 

  7. Konsta-Gdoutos M S, Metaxa Z, Shah S P. Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials[J]. Cem. Concr. Res., 2010, 40: 1 052–1 059

    Article  CAS  Google Scholar 

  8. Betterman L R, Ouyang C, Shah S P. Fiber-matrix Interaction in Mi-crofiber-reinforced Mortar[J]. Advanced Cement Based Materials, 1995, 2: 53–61

    Article  CAS  Google Scholar 

  9. Yao W, Li J, Wu K. Mechanical Properties of Hybrid Fiber-reinforced Concrete at Low Fiber Volume Fraction[J]. Cem. Concr. Res., 2003, 33: 27–30

    Article  CAS  Google Scholar 

  10. Lawler J S, Wilhelm T, Zampini D, et al. Fracture Processes of Hybrid Fiber-reinforced Mortar[J]. Mater. Struct., 2003, 36: 197–208

    Article  CAS  Google Scholar 

  11. Parveen S, Rana S, Fangueiro R, et al. Microstructure and Mechanical Properties of Carbon Nanotube Reinforced Cementitious Composites Developed Using a Novel Dispersion Technique[J]. Cem. Concr. Res., 2015, 73: 215–227

    Article  CAS  Google Scholar 

  12. Hu Y, Luo D, Li P, et al. Fracture Toughness Enhancement of Cement Paste with Multi-walled Carbon Nanotubes[J]. Constr. Build. Mater., 2014, 70: 332–338

    Article  Google Scholar 

  13. Xu S, Liu J, Li Q. Fangueiro Mechanical Properties and Microstructure of Multi-walled Carbon Nanotube-reinforced Cement Paste[J]. Constr. Build. Mater., 2015, 76: 16–23

    Article  Google Scholar 

  14. Li G Y, Wang P M, Zhao X. Fangueiro Pressure-sensitive Properties and Microstructure of Carbon Nanotube Reinforced Cement Composites[J]. Cem. Concr. Comp., 2007, 29: 377–382

    Article  CAS  Google Scholar 

  15. Loos M R, Schulte K. Is It Worth The Effort to Reinforce Polymers with Carbon Nanotubes?[J]. Macromol. Theor. Simul., 2011, 20: 350–362

    Article  CAS  Google Scholar 

  16. Yuan W, Cui J, Xu S. Mechanical Properties and Interfacial Interaction of Modified Calcium Sulfate Whisker/poly(vinyl chloride) Compos-ites[J]. J. Mater. Sci. Technol., 2016, 32: 1 352–1 360

    Article  Google Scholar 

  17. Cwirzen A, Habermehl-Cwirzen K, Penttala V. Surface Decoration of Carbon Nanotubes and Mechanical Properties of Cement/Carbon Nanotube Composites[J]. Adv. Cem. Res., 2008, 20: 65–73

    Article  CAS  Google Scholar 

  18. Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Multi-scale Mechanical and Fracture Characteristics and Early-age Strain Capacity of High Performance Carbon Nanotube/Cement Nanocomposites[J]. Cem. Concr. Comp., 2010, 32: 110–115

    Article  CAS  Google Scholar 

  19. Tyson B M, Abu Al-Rub R K, Yazdanbakhsh A, et al. Carbon Nano-tubes and Carbon Nanofbers for Enhancing the Mechanical Properties of Nanocomposite Cementitious Materials[J]. J. Mater. Civil. Eng., 2011, 23: 1 028–1 035

    Article  CAS  Google Scholar 

  20. Cranmer D C. Fiber Coating and Characterization[J]. Am. Ceram. Soc. Bull., 1989, 68: 415–419

    CAS  Google Scholar 

  21. Kumar S, Singh R N. Effects of Fiber Coating Properties on The Crack Defection and Penetration in Fiber-reinforced Ceramic Composites[J]. Acta. Mater., 1997, 45: 4 721–4 731

    Article  CAS  Google Scholar 

  22. Chen E, Chen D. The Development of Whisker-reinforced Polymer Composites Mechanisms[J]. Polymer Materials Science & Engineering, 2006, 22: 20–24

    Google Scholar 

  23. Mueller F A, Gbureck U, Kasuga T, et al. Whisker-reinforced Calcium Phosphate Cements[J]. J. Am. Ceram. Soc., 2007, 90: 3 694–3 697

    Article  CAS  Google Scholar 

  24. Faber K T, Evans A G. Crack Defection Processes 1. Theory[J]. Acta. Metallurgica, 1983, 31: 565–576

    Article  Google Scholar 

  25. Becher P F, Hsueh C H, Angelini P, et al. Toughening Behavior in Whisker-reinforced Ceramic Matrix Composites[J]. J. Am. Ceram. Soc., 1988, 71: 1 050–1 061

    Article  CAS  Google Scholar 

  26. Becher P F. Microstructural Design of Toughened Ceramics[J]. J. Am. Ceram. Soc., 1991, 74: 255–269

    Article  CAS  Google Scholar 

  27. Mehta P, Monteiro P. Concrete Microstructure, Properties, and Materials[M]. Berkeley: McGraw-Hill, 2006

    Google Scholar 

  28. Scrivener K L, Juilland P, Monteiro P J M. Advances in Understanding Hydration of Portland Cement[J]. Cem. Concr. Res., 2015, 78: 38–56

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruizhi Pan  (潘锐之).

Additional information

Funded by the National High Technology Research and Development Program of China (No.2015AA034701) and the Research Innovation Program for College Graduates of Jiangsu Province (No. KYLX16_0588)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Pan, R. & Xu, J. Mechanical Properties and Microstructure of CaSO4 Whisker Reinforced Cement Mortar. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 1170–1176 (2019). https://doi.org/10.1007/s11595-019-2174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2174-z

Key words

Navigation