Skip to main content
Log in

Effects of Fe Modified Na2WO4 Additive on the Hydrogen Storage Properties of MgH2

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A Fe modified Na2WO4 compound was synthesized by a solution impregnation method and was ball-milled with MgH2 to constitute a novel MgH2-Fe2O3/Na2WO4 composite. The effects of the Fe2O3/Na2WO4 additive on the hydrogen storage properties of MgH2 together with the corresponding mechanism were investigated. At 423 K, within the first 200 seconds, the hydrogen absorption amount of MgH2+20 wt% Fe2O3/Na2WO4 was almost 5 times that of pure MgH2. And at 573 K, its total hydrogen desorption amount was 7 times that for pure MgH2. Meanwhile, its onset dehydrogenation temperature was 110 K lower than that of pure MgH2. It was worth noting that the MgH2+20 wt% Fe/Na2WO4 presented the lower dehydrogenation reaction activation energy (Ea) of 35.9 kJ·mol-1 compared to that of pure MgH2. The active MgWO4, Mg2FeH6 and MgO formed during the milling process were responsible for the improvement of the hydrogen storage properties for MgH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ouyang L Z, Huang J M, Wang H, et al. Excellent Hydrolysis Performances of Mg3RE Hydrides[J]. Int. J Hydrogen Energy, 2013, 38(7): 2 973–2 978

    Article  CAS  Google Scholar 

  2. Cui Y J, Yang C F, Li M, et al. Two Dimension C3N4/MoS2 Nano-composites with Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(1): 23–29

    Article  CAS  Google Scholar 

  3. Sakintuna B, Lamari-Darkrim F., Hirscher M. Metal Hydride Materials for Solid Hydrogen Storage: A Review[J]. Int. J. Hydrogen Energy, 2007, 32: 1 121–1 140

    Article  CAS  Google Scholar 

  4. Mohsen D, Mitlin D. TEM Analysis of the Microstructure in TiF3-catalyzed and Pure MgH2 during the Hydrogen Storage Cycling, Acta Materialia[J]. Acta Materialia, 2012, 60(19): 6 441–6 456

    Article  Google Scholar 

  5. Abdellatief M, Campostrini R, Leoni M, et al. Effects of SnO2 on Hydrogen Desorption of MgH2[J]. Int. J. Hydrogen Energy, 2013, 38(11): 4 664–4 669

    Article  CAS  Google Scholar 

  6. Pei P, Song X P, Liu J, et al. Study on the Hydrogen Desorption Mechanism of a Mg-V Composite Prepared by SPS[J]. Int. J. Hydrogen Energy, 2012, 37(1): 984–989

    Article  CAS  Google Scholar 

  7. Leng H Y, Pan Y B, Li Q, et al. Effect of LiH on Hydrogen Storage Property of MgH2[J]. Int. J. Hydrogen Energy, 2014, 39: 13 622–13 627

    Article  CAS  Google Scholar 

  8. Kurko S, Rašković Ž, Novaković N, et al. Hydrogen Storage Properties of MgH2 Mechanically Milled with α and β SiC[J]. Int. J. Hydrogen Energy, 2011, 36(1): 549–554

    Article  CAS  Google Scholar 

  9. Shang C X, Guo Z X. Effect of Carbon on Hydrogen Desorption and Absorption of Mechanically Milled MgH2[J]. J. Power Sources, 2004, 129(1): 73–80

    Article  CAS  Google Scholar 

  10. Tian M, Shang C X. Effect of TiC and Mo2C on Hydrogen Desorption of Mechanically Milled MgH2[J]. J. Chem. Sci. Tech., 2012, 1: 54–59

    Google Scholar 

  11. Ding X Q, Zhu Y F, Wei L J, et al. Synergistic Hydrogen Desorption of HCS MgH2 + LiAlH4 Composite[J]. Energy, 2013, 55: 933–938

    Article  CAS  Google Scholar 

  12. Liang C, Liang S, Xia Y, et al. Progress in the Mg(NH2)2-2LiH Material for Hydrogen Storage[J]. Acta Phys.-Chim. Sin., 2015, 31(4): 627–635

    CAS  Google Scholar 

  13. Song M Y, Kwon S N, Kwak Y J, et al. Improvement of Hydrogen-storage Properties of MgH2 by Addition of Li3N, LiBH4, Fe and/or Ti[J]. Mater. Res. Bull., 2013, 48(1): 74–78

    Article  CAS  Google Scholar 

  14. Wang J S, Han S M, Zhang W, et al. Effects of MoS2 Addition on the Hydrogen Storage Properties of 2LiBH4-MgH2 Systems[J]. Int. J. Hydrogen Energy, 2013, 38(34): 14 631–14 637

    Article  CAS  Google Scholar 

  15. Conceição M O T, Santos D S, Dias M L. Hydrogen Sorption Enhancement by Nb2O5 and Nb Catalysts Combined with MgH2[J]. J. Alloys Compd., 2013, 550: 179–184

    Article  Google Scholar 

  16. Aresfernández J, Agueyzinsou K F. Superior MgH2 Kinetics with MgO Addition: A Tribological Effect[J]. Catalysts, 2012, 2: 330–343

    Article  Google Scholar 

  17. Jin S A, Shim J H, Cho Y W, et al. Dehydrogenation and Hydrogenation Characteristics of MgH2 with Transition Metal Fluorides[J]. J. Power Sources, 2007, 172(2): 859–862

    Article  CAS  Google Scholar 

  18. Zhang J, Huang Y N, Mao C, et al. Synergistic Effect of Ti and F Co-doping on Dehydrogenation Properties of MgH2 From First-Principles Calculations[J]. J. Alloys Compd., 2012, 538: 205–211

    Article  CAS  Google Scholar 

  19. Jia Y H, Han S M, Zhang W, et al. Hydrogen Absorption and Desorp-tion Kinetics of MgH2 Catalyzed by MoS2 and MoO2[J]. Int. J. Hydrogen Energy, 2013, 38(5): 2 352–2 356

    Article  CAS  Google Scholar 

  20. Wang J S, Zhang W, Cheng Y, et al. Hydrogenation/dehydrogenation Performance of MgH2 Catalyzed by WS2[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30(4): 670–673

    Article  CAS  Google Scholar 

  21. Zhang W, Cheng Y, Han D, et al. The Hydrogen Storage Properties of MgH2-Fe3S4, Composites[J]. Energy, 2015, 93: 625–630

    Article  CAS  Google Scholar 

  22. Puszkiel J, German F, Larochette P A, et al. Sorption Behavior of the MgH2-Mg2FeH6, Hydride Storage System Synthesized by Mechanical Milling Followed by Sintering[J]. Int. J. Hydrogen Energy, 2013, 38(34): 14 618–14 630

    Article  CAS  Google Scholar 

  23. Shao H, Felderhoff M, Schüth F. Hydrogen Storage Properties of Nanostructured MgH2/TiH2, Composite Prepared by Ball Mlling under High Hydrogen Pressure[J]. Int. J. Hydrogen Energy, 2011, 36: 10 828–10 833

    Article  CAS  Google Scholar 

  24. Nielsen T K, Manickam K, Hirscher M K, et al. Confinement of MgH2 Nanoclusters within Nanoporous Aerogel Scaffold Materials[J]. ACS Nano, 2009, 3(11): 3 521–3 528

    Article  CAS  Google Scholar 

  25. Jongh P E D, Wagemans R W P, Eggenhuisen T M, et al. The Preparation of Carbon-supported Magnesium Nanoparticles Using Melt Infiltration[J]. Chem Mater., 2007, 19(24): 6 052–6 057

    Article  Google Scholar 

  26. Wang H, Zhang S F, Liu J W, et al. Enhanced Dehydrogenation of Nanoscale MgH2 Confined by Ordered Mesoporous Silica[J]. Mater Chem. Phys., 2012, 136(1): 146–150

    Article  CAS  Google Scholar 

  27. Xu G, Shen N, Chen L J, et al. Effect of BiVO4 Additive on the Hydrogen Storage Properties of MgH2[J]. Mater. Res. Bull, 2017, 89: 197–203

    Article  CAS  Google Scholar 

  28. Wang J S, Han S M, Li Y, et al. Hydriding/Dehydriding Properties of an MgH2+20%(w) MgTiO3 Composite[J]. Acta Physico-Chimica Sinica, 2014, 30(12): 2 323–2 327

    CAS  Google Scholar 

  29. Shan J W, Li P, Wan Q, et al. Significantly Improved Dehydrogenation of Ball-Milled MgH2 Doped with CoFe2O4 Nanoparticles[J]. J. Power Sources, 2014, 268: 778–786

    Article  CAS  Google Scholar 

  30. Li P, Wan Q, Li Z L, et al. MgH2 Dehydrogenation Properties Improved by MnFe2O4 Nanoparticles[J]. J. Power Sources, 2013, 239: 201–206

    Article  CAS  Google Scholar 

  31. Zhang W, Shen N, Han S M, et al. Hydrogen Storage Properties of MgH2+20 wt% Na2WO4 Composite[J]. Mater. Res. Bull., 2015, 72: 197–203

    Article  Google Scholar 

  32. WANG J, YOU J Q, WANG Y Y, et al. Raman Spectroscopic Study Oil the Dehydration Process and the Mcrostructure of the Na2 W04 · 2H2O Crystal and Its Melt.[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 307–310

    CAS  Google Scholar 

  33. Kissinger H E. Reaction Kinetics in Differential Thermal Analysis[J]. Anal. Chem., 1957, 29: 1 417–1 421

    Article  Google Scholar 

  34. Kurko S, Aurora A, Gattia D M, et al. Hydrogen Sorption Properties of MgH2/NaBH4 Composites[J]. Int. J. Hydrogen Energy, 2013, 38(27): 12 140–12 145

    Article  CAS  Google Scholar 

  35. Günter J R, Amberg M. High-temperature Magnesium Tungstate MgWO4 Prepared at Moderate Temperatures [J]. Solid State Ionics, 1989, 32-33(part-P1): 141–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang  (张伟).

Additional information

Funded by the National Natural Science Foundation of China(No.51771164), Scientific Research Projects in Colleges and Universities in Hebei Province, China (No.ZD2019307), the Fundamental Research Funds for the Central Universities (No. 3142019013), the Natural Science Foundation of Hebei Province of China(No.E2019508214), and the Program for Top-notch Young Talents in University of Hebei Province (No.BJ2016043)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, W., Li, B. et al. Effects of Fe Modified Na2WO4 Additive on the Hydrogen Storage Properties of MgH2. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 1030–1036 (2019). https://doi.org/10.1007/s11595-019-2155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2155-2

Key words

Navigation