Skip to main content
Log in

Magnetic Fe3O4@mTiO2-AIPA Microspheres for Separation of Phosphoproteins and Non-phosphoproteins

  • Biomaterials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A novel phosphoprotein separation material was developed, which is constructed by a magnetic mesoporous Fe3O4@TiO2 (Fe3O4@mTiO2) microsphere and a 5-aminoisophthalic acid (AIPA) monolayer that provides additional binding sites toward phosphate groups. The results of characteristic experiments demonstrated that Fe3O4@mTiO2-AIPA had good dispersability, high magnetic susceptibility, and satisfactory grafting ratio of AIPA, ascribed to the large specific surface area of the inorganic substrate. Taking advantages of these features, Fe3O4@mTiO2-AIPA was successfully utilized to separate α-casein (a typical phosphoprotein) and bovine serum albumin (BSA, a typical non-phosphoprotein) from their mixtures (molar ratio = 1:2). Through adjusting pH and polarity of solutions, the BSA and α-casein were respectively enriched in washing fraction and elution fraction. This result displays the good potential of Fe3O4@mTiO2-AIPA for application in phosphoprotein enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannister AJ, Kouzarides T. Regulation of Chromatin by Histone Modifications[J]. Cell Res., 2011, 21(3): 381–395

    Article  Google Scholar 

  2. Grimsrud PA, Swaney DL, Wenger CD, et al. Phosphoproteomics for the Masses[J]. ACS Chem. Biol., 2010, 5(1): 105–119

    Article  Google Scholar 

  3. Graves JD, Krebs EG. Protein Phosphorylation and Signal Transduction[J]. Pharmacol. Ther., 1999, 82(2–3): 111–121

    Article  Google Scholar 

  4. Gong CX, Singh TJ, Grundke-Igbal I, et al. Alzheimer’s Disease Abnormally Phosphorylated τ Is Dephosphorylated by Protein Phosphatase-2B (Calcineurin)[J]. J. Neurochem., 1994, 62(2): 803–806

    Article  Google Scholar 

  5. Solari FA, Dell’Aica M, Sickmann A, et al. Why Phosphoproteomics Is Still a Challenge[J]. Mol. BioSyst., 2015, 11(6): 1 487–1 493

    Article  Google Scholar 

  6. Engholm-Keller K, Larsen MR. Technologies and Challenges in Large-Scale Phosphoproteomics[J]. Proteomics, 2013, 13(6): 910–931

    Article  Google Scholar 

  7. Hou J, Xie Z, Xue P, et al. Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix[J]. J. Biomed. Biotechnol., 2010: 759 690

  8. Xiong Z, Chen Y, Zhang L, et al. Facile Synthesis of Guanidyl-Functionalized Magnetic Polymer Microspheres for Tunable and Specific Capture of Global Phosphopeptides or Only Multiphosphopeptides[J]. ACS Appl. Mater. Interfaces, 2014, 6(24): 22 743–22 750

    Article  Google Scholar 

  9. Wu S, Lourette NM, Tolic N, et al. An Integrated Top-Down and Bottom-Up Strategy for Broadly Characterizing Protein Isoforms and Modifications[J]. J. Proteome Res., 2009, 8(3): 1 347–1 357

    Article  Google Scholar 

  10. Chait BT. Mass Spectrometry: Bottom-Up or Top-Down?[J]. Science, 2006, 314(5 796): 65–66

    Article  Google Scholar 

  11. Delom F, Chevet E. Phosphoprotein Analysis: from Proteins to Proteomes[J]. Proteome Sci., 2006, 4: 15

    Article  Google Scholar 

  12. Yates JR, Ruse CI, Nakorchevsky A. Proteomics by Mass Spectrometry: Approaches, Advances, and Applications[J]. Annu. Rev. Biomed. Eng., 2009, 11: 49–79

    Article  Google Scholar 

  13. Han X, Wang Y, Aslanian A, et al. Sheathless Capillary Electrophoresis-Tandem Mass Spectrometry for Top-Down Characterization of Pyrococcus Furiosus Proteins on a Proteome Scale[J]. Anal. Chem., 2014, 86(22): 11 006–11 012

    Article  Google Scholar 

  14. Siuti N, Kelleher NL. Decoding Protein Modifications Using Top-Down Mass Spectrometry[J]. Nat Methods., 2007, 4(10): 817–821

    Article  Google Scholar 

  15. Waanders LF, Hanke S, Mann M. Top-Down Quantitation and Characterization of SILAC-Labeled Proteins[J]. J. Am. Soc. Mass Spectrom., 2007, 18(11): 2 058–2 064

    Article  Google Scholar 

  16. Tran JC, Zamdborg L, Ahlf DR, et al. Mapping Intact Protein Isoforms in Discovery Mode Using Top-Down Proteomics[J]. Nature, 2011, 480(7 376): 254–258

    Article  Google Scholar 

  17. Schmidt SR, Schweikart F, Andersson ME. Current Methods for Phosphoprotein Isolation and Enrichment[J]. J. Chromatogr. B, 2007, 849(1–2): 154–162

    Article  Google Scholar 

  18. Hwang L, Ayaz-Guner S, Gregorich ZR, et al. Specific Enrichment of Phosphoproteins Using Functionalized Multivalent Nanoparticles[J]. J. Am. Chem. Soc., 2015, 137(7): 2 432–2 243

    Article  Google Scholar 

  19. Liu H, Yang T, Dai J, et al. Hydrophilic Modification of Titania Nano-materials as a Biofunctional Adsorbent for Selective Enrichment of Phosphopeptides[J]. Analyst, 2015, 140(19): 6 652–6 659

    Article  Google Scholar 

  20. Yan YH, Zhang XM, Deng CH. Designed Synthesis of Titania Nanoparticles Coated Hierarchially Ordered Macro/Mesoporous Silica for Selective Enrichment of Phosphopeptides[J]. ACS Appl. Mater. Interfaces, 2014, 6(8): 5 467–5 471

    Article  Google Scholar 

  21. Li Y, Xu X, Qi D, et al. Novel Fe3O4@TiO2 Core-Shell Microspheres for Selective Enrichment of Phosphopeptides in Phosphoproteome Analysis[J]. J. Proteome Res., 2008, 7(6): 2 526–2 538

    Article  Google Scholar 

  22. Mann M, Ong SE, Gronborg M, et al. Analysis of Protein Phosphorylation Using Mass Spectrometry: Deciphering the Phosphoproteome[J]. Trends Biotechnol., 2002, 20(6): 261–268

    Article  Google Scholar 

  23. Tang J, Yin P, Lu X, et al. Development of Mesoporous TiO2 Microspheres with High Specific Surface Area for Selective Enrichment of Phosphopeptides by Mass Spectrometric Analysis[J]. J. Chromatogr. A, 2010, 1217(15): 2 197–2 205

    Article  Google Scholar 

  24. Qing G, Wang X, Jiang L, et al. Saccharide-Sensitive Wettability Switching on a Smart Polymer Surface[J]. Soft Matter., 2009, 5(14): 2 759–2 765

    Article  Google Scholar 

  25. Liu S, Kang J, Cao X, et al. Acylthiourea Derivatives as Colorimetric Sensors for Anions: Synthesis, Characterization and Spectral Behaviors[J]. Spectrochim. Acta, Part A, 2016, 153: 471–477

    Article  Google Scholar 

  26. Nishio T, Ayano E, Suzuki Y, et al. Separation of Phosphorylated Peptides Utilizing Dual pH- and Temperature-Responsive Chromatography[J]. J. Chromatogr. A, 2011, 1218(15): 2 079–2 084

    Article  Google Scholar 

  27. Lu L, Li W, Wang G, et al. Synthesis and Characterization of Biomimetic Fe3O4/Coke Magnetic Nanoparticles Composite Material[J]. J. Wuhan Univ. Technol., -Mater Sci. Ed., 2016, 31(2): 254–259

    Article  Google Scholar 

  28. Ren Q, Chu H, Chen M, et al. Design and Fabrication of Superparamaganitic Hybrid Microspheres for Protein Immobilization[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2011, 26(6): 1 084–1 088

    Article  Google Scholar 

  29. Chen CT, Chen YC. Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry[J]. Anal. Chem., 2005, 77(18): 5 912–5 919

    Article  Google Scholar 

  30. Deng H, Li X, Peng Q, et al. Monodisperse Magnetic Single-Crystal Ferrite Microspheres[J]. Angew. Chem. Int. Ed., 2005, 44(18): 2 782–2 785

    Article  Google Scholar 

  31. Wang P, Chen D, Tang FQ. Preparation of Titania-Coated Polystyrene Particles in Mixed Solvents by Ammonia Catalysis[J]. Langmuir, 2006, 22(10): 4 832–4 835

    Article  Google Scholar 

  32. Gelb LD, Gubbins KE. Characterization of Porous Glasses: Simulation Models, Adsorption Isotherms, and the Brunauer-Emmett-Teller Analysis Method[J]. Langmuir, 1998, 14(8): 2 097–2 111

    Article  Google Scholar 

  33. Ojeda ML, Esparza JM, Campero A, et al. On Comparing BJH and NLDFT Pore-Size Distributions Determined from N2 Sorption on SBA-15 Substrata[J]. Phys. Chem. Chem. Phys., 2003, 5(9): 1 859–1 866

    Article  Google Scholar 

  34. Xu H, Zhang Y, Niu X, et al. Preparation and in vitro Release Properties of Mercaptopurine Drug-loaded Magnetic Microspheres[J]. J. Wuhan Univ. Technol.,-Mater. Sci. Ed., 2013, 28 (6): 1 231–1 235

    Article  Google Scholar 

  35. Li C, Younesi R, Cai Y, et al. Photocatalytic and Antibacterial Properties of Au-Decorated Fe3O4@mTiO2 Core-Shell Microspheres[J]. Appl. Catal., B, 2014, 156–157: 314–322

    Article  Google Scholar 

  36. Song H, Ma X, Xiong F, et al. Preparation and Evaluation of Insulin-Loaded Nanoparticles based on Hydroxypropyl-β-Cyclodextrin Modifed Carboxymethyl Chitosan for Oral Delivery[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31(6): 1 394–1 400

    Article  Google Scholar 

  37. Jin WH, Dai J, Li SJ, et al. Human Plasma Proteome Analysis by Multidimensional Chromatography Prefractionation and Linear Ion Trap Mass Spectrometry Identification[J]. J. Proteome Res., 2005, 4(2): 613–619

    Article  Google Scholar 

  38. Canas B, Pineiro C, Calvo E, et al. Trends in Sample Preparation for Classical and Second Generation Proteomics[J]. J. Chromatogr. A, 2007, 1153(1–2): 235–258

    Article  Google Scholar 

  39. Wuhrer M, Deelder AM, Hokke CH. Protein Glycosylation Analysis by Liquid Chromatography-Mass Spectrometry[J]. J. Chromatogr. B, 2005, 825(2): 124–133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Lu  (陆琦) or Guangyan Qing  (卿光焱).

Additional information

Funded by the National Natural Science Foundation of China (Nos. 51473131, 21275114, 51533007 and 51521001), the Major State Basic Research Development Program of China (973 Program) (No. 2013CB933002), Hubei Provincial Department of Education for Financial Assistance Through the “Chutian Scholar” Program, and Hubei Provincial Natural Science Foundation of China (No. 2014CFA039)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Zhao, R., Lu, Q. et al. Magnetic Fe3O4@mTiO2-AIPA Microspheres for Separation of Phosphoproteins and Non-phosphoproteins. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 752–759 (2019). https://doi.org/10.1007/s11595-019-2113-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2113-z

Key words

Navigation