Skip to main content
Log in

Fabrication and Characterization of One Interpenetrating Network Hydrogel Based on Sodium Alginate and Polyvinyl Alcohol

  • Biomaterials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

One interpenetrating network hydrogel based on sodium alginate (SA) and polyvinyl alcohol (PVA) was synthesized by combining the raw materials of PVA and SA with the double physical crosslinking methods of freezing thawing and Ca2+ crosslinking. The PVA-SA composite hydrogel have been characterized by scanning electron microscopy for surface morphology, infrared spectroscopy for investigating the chemical interactions between PVA and SA, X-ray diffraction for studying the PVA-SA composite structure property and thermal gravimetric for understanding the PVA-SA composite thermal stability. The swelling behavior and the degradation rate of the PVA-SA composite hydrogel were studied in simulated gastrointestinal fluid. Using bovine serum albumin (BSA) and salicylic acid as the model drugs, the release behavior of the PVA-SA composite hydrogel on macromolecular protein drugs and small molecule drug were evaluated. The results showed that the water absorption and degradation ability of the PVA-SA composite hydrogel was much better compared to the pure SA hydrogel or pure PVA hydrogel. The hydrogel exhibited remarkable pH sensitivity and the network was stable in the simulated intestinal fluid for more than 24 h. With the advantages such as mild preparation conditions, simple method, less reagent and none severe reaction, the PVA-SA composite hydrogel is expected to be a new prosperous facile sustained drug delivery carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ooi S Y, Ahmad I, Amin M C I M. Cellulose Nanocrystals Extracted from Rice Husks as a Reinforcing Material in Gelatin Hydrogels for Use in Controlled drug Delivery Systems[J]. Ind. Crop. Prod., 2016. 93: 227–234

    Article  CAS  Google Scholar 

  2. Yang J A, Yeom J, Hwang B W, et al. In Situ-forming Injectable Hydrogels for Regenerative Medicine[J]. Prog. Polym. Sci., 2014, 39(12): 1 973–1 986

    Article  CAS  Google Scholar 

  3. Tomme S R V, Storm G, Hennink W E. In Situ Gelling Hydrogels for Pharmaceutical and Biomedical Applications[J]. Int. J. Pharm., 2008, 355(1): 1–18

    Article  Google Scholar 

  4. Huynh D P, Nguyen M K, Pi BS, et al. Functionalized Injectable Hydrogels for Controlled Insulin Delivery[J]. Biomaterials, 2008, 29(16): 2 527–2 534

    Article  CAS  Google Scholar 

  5. Peppas N A, Bures P, Leobandung W, et al. Hydrogels in Pharmaceutical Formulations[J]. Eur. J. Pharm. Biopharm., 2000, 50(1): 27–46

    Article  CAS  Google Scholar 

  6. Gupta P, Vermani K, Garg S. Hydrogels: From Controlled Release to pH-responsive drug Delivery[J]. Drug Discov. Today, 2002, 7(10): 569–579

    Article  CAS  Google Scholar 

  7. Hoffman A S. Hydrogels for Biomedical Applications[J]. Adv. Drug Deliver. Rev.,2002,54(1): 3–12

    Article  CAS  Google Scholar 

  8. Hendrawan, Khoerunnisa F, Sonjaya Y, et al. Physical and Chemical Characteristics of Alginate-Poly (Vinyl Alcohol) Based Controlled Release Hydrogel[J]. Chem. Eng. J., 2016, 4(4): 4 863–4 869

    CAS  Google Scholar 

  9. Chiellini E, Corti A, D’Antone S, et al. Biodegradation of Poly (Vinyl Alcohol) Based Materials[J]. Prog. Polym. Sci.,2003,28(6): 963–1 014

    Article  CAS  Google Scholar 

  10. Liu X J, Ren X Y, Guan S, et al. Highly Stretchable and Tough Double Network Hydrogels Via Molecular Stent[J]. Eur Polym. J., 2015,73: 149–161

    Article  CAS  Google Scholar 

  11. Lozinsky V I, Galaev I Y, Plieva F M, et al. Polymeric Cryogels as Promising Materials of Biotechnological Interest[J]. Trends Biotechnol., 2003, 21(10): 445–451

    Article  CAS  Google Scholar 

  12. Zhao Y, Shen W, Chen Z G, et al. Freeze-thaw Induced Gelation of Alginates[J]. Carbohyd. Polym., 2016, 148: 45–51

    Article  CAS  Google Scholar 

  13. Huang H B, Yao J L, Qin H T, et al. Conducting Hydrogels Originating from High-pressure Induced Gelation of Poly(Vinyl Alcohol) and in-situ Polymerization of Aniline[J]. Synthetic metals, 2016, 221: 15–18

    Article  CAS  Google Scholar 

  14. Nagura M, Hamano T, Ishikawa H. Structure of Poly(Vinyl Alcohol) Hydrogel Prepared by Repeated Freezing and Melting[J]. Polymer, 1989, 30(4): 762–765

    Article  CAS  Google Scholar 

  15. Dini L, Panzarini E, Miccoli M A, et al. In Vitro Study of the Interaction of Polyalkilimide and Polyvinyl Alcohol Hydrogels with Cells[J]. Tissue Cell, 2005, 37(6): 479–487

    Article  CAS  Google Scholar 

  16. Bodugoz-Senturk H, Choi J, Ebru Oral, et al. The Effect of Polyethylene Glycol on the Stability of Pores in Polyvinyl Alcohol Hydrogels during an Nealing[J]. Biomaterials, 2008, 29(2): 141–149

    Article  CAS  Google Scholar 

  17. Hu Y, Chen T, Dong X Y, et al. Preparation and Characterization of Composite Hydrogel Beads Based on Sodium Alginate[J]. Polym. Bull., 2015, 72(11): 2 857–2 869

    Article  CAS  Google Scholar 

  18. Tsai F H, Chiang P Y, Kitamura Y. Producing Liquid-core Hydrogel Beads by Reverse Spherification: Effect of Secondary Gelation on Physical Properties and Release Characteristics[J]. Food Hydrocolloid, 2017, 62: 140–148

    Article  CAS  Google Scholar 

  19. George M, Abraham T E. Polyionic Hydrocolloids for the Intestinal Delivery of Protein Drugs: Alginate and Chitosan-a Review[J]. J. Controlled Release, 2006, 114(1): 1–14

    Article  CAS  Google Scholar 

  20. Lonita M, Pandele M A, Lovu H. Sodium Alginate/Graphene Oxide Composite Films with Enhanced Thermal and Mechanical Properties[J]. Carbohydr. Polym., 2013, 94(1): 339–344

    Article  Google Scholar 

  21. Fan M, Ma Y, Tan H P. Covalent and Injectable Chitosan-Chondroitin Sulfate Hydrogels Embedded with Chitosan Microspheres for Drug Delivery and Tissue Engineering[J]. Mat. Sci. Eng.: C, 2017, 71: 67–74

    Article  CAS  Google Scholar 

  22. Abureesh M A, Oladipo A A, Gazi M. Facile Synthesis of Glucose-sensitive Chitosan-Poly(vinyl alcohol) hydrogel: Drug Release Optimization and Swelling Properties[J]. Int. J. Biol. Macromol., 2016, 90: 75–80

    Article  CAS  Google Scholar 

  23. Constantin M, Bucatariu SM, Doroftei F, et al. Smart Composite Materials Based on Chitosan Microspheres Embedded in Thermosensitive Hydrogel for Controlled Delivery of Drugs[J]. Carbohyd. Polym., 2017, 157: 493–502

    Article  CAS  Google Scholar 

  24. Snigdha K, Singh B K, Mehta A S, et al. Self-assembling N-(9-Fluorenylmethoxycarbonyl)-l-Phenylalanine Hydrogel as Novel Drug Carrier[J]. Int. J. Biol. Macromol., 2016, 93: 1 639–1 646

    Article  CAS  Google Scholar 

  25. Qi X L, Hu X Y, Wei W, et al. Investigation of Salecan/Poly(Vinyl Alcohol) Hydrogels Prepared by Freeze/Thaw Method[J]. Carbohyd. Polym., 2015, 118: 60–69

    Article  CAS  Google Scholar 

  26. Ashraf M U, Hussain M A, Muhammad G, et al. A Superporous and Superabsorbent Glucuronoxylan Hydrogel from Quince (Cydonia Oblanga): Stimuli Responsive Swelling, on-off Switching and Drug Release[J]. Int. J. Biol. Macromol., 2017, 95: 138–144

    Article  CAS  Google Scholar 

  27. Thakur S, Pandey S, Arotiba O A. Development of a Sodium Alginate-based Organic/Inorganic Superabsorbent Composite Hydrogel for Adsorption of Methylene Blue[J]. Carbohyd. Polym., 2016, 153: 34–46

    Article  CAS  Google Scholar 

  28. Huang B, Liu M X, Long Z, et al. Effects of Halloysite Nanotubes on Physical Properties and Cytocompatibility of Alginate Composite Hydrogels[J].Mat. Sci. Eng.: C, 2017, 70: 303–310

    Article  CAS  Google Scholar 

  29. Gong X, Branford-White C, Tao L, et al. Preparation and Characterization of a Novel Sodium Alginate Incorporated Self-assembled Fmoc-FF Composite Hydrogel[J]. Mat. Sci. Eng.: C, 2016, 58(9): 478–486

    Article  CAS  Google Scholar 

  30. Singh B, Sharma V. Crosslinking of Poly(Vinylpyrrolidone)/Acrylic Acid with Tragacanth Gum for Hydrogels Formation for Use in Drug Delivery Applications[J]. Carbohyd. Polym., 2017, 157: 185–195

    Article  CAS  Google Scholar 

  31. Oladipo A A, Gazi M, Saber-Samandari S. Adsorption of Anthraquinone Dye onto Eco-friendly Semi-IPN Biocomposite Hydrogel: Equilibrium Isotherms, Kinetic Studies and Optimization[J]. J. Taiwan Inst. Chem. E, 2014, 45(2): 653–664

    Article  CAS  Google Scholar 

  32. Wang L, Liu M Z, Gao C M, et al. A pH-, Thermo-, and Glucose-, Triple-responsive Hydrogels: Synthesis and Controlled Drug Delivery[J]. React. Funct. Polym., 2010, 70(3): 159–167

    Article  CAS  Google Scholar 

  33. Nayak AK, Kalia S, Hasnain MS. Optimization of Aceclofenac-loaded Pectinate-Poly(Vinyl Pyrrolidone) Beads by Response Surface Methodology[J]. Int. J. Biol. Macromol., 2013, 62(11): 194–202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Hu  (胡燕).

Additional information

Funded by the National Natural Science Foundation of China (No. 81401510), Hubei Provincial Natural Science Foundation of China (No.2017CFB414), the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (No.CZY19030), and the National College Students Innovation and Entrepreneurship Training Project (No. GCX16034)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Han, D., Ding, Z. et al. Fabrication and Characterization of One Interpenetrating Network Hydrogel Based on Sodium Alginate and Polyvinyl Alcohol. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 744–751 (2019). https://doi.org/10.1007/s11595-019-2112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2112-0

Key words

Navigation