Skip to main content
Log in

Assessment of Toxicity of BSA-conjugated Zinc Oxide Quantum Dots for C2C12 Cells

  • Biomaterials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Colloidal semiconductor nanoparticles (quantum dots, QDs) have attracted a lot of interests in numerous biological and medical applications due to their potent fluorescent properties. However, the possible toxic effects of quantum dots remain an issue of debate. In this study, we aimed to evaluate the cytocompatibility of bovine serum albumin (BSA) conjugated zinc oxide QDs for C2C12 cells. In the experiment, ZnO QDs were synthesized by using BSA as the structure directing agent, and the morphology and crystal phase of ZnO QDs were determined by transmission electron microscopy, X-ray diffractograms and Fourier transform infrared spectrograph techniques. The inverted fluorescence microscope results showed that ZnO QDs were distributed inside the cells. The toxicity of ZnO QDs was assessed by MTT methods, which revealed that ZnO QDs were highly cytocompatible in the concentration less than 200 µM. However, when the concentration of QDs was higher than 1 000 µM ZnO QDs showed significantly toxicity, which was ascribed to generation of free zinc and formation of reactive oxygen species (ROS). Furthermore, the morphological observations exhibited that cells treated with ZnO QDs showed altered morphology, depolymerized cytoskeleton and irregular-shaped nuclei. This study provides helpful guidances on the future safe use and manipulation of QDs to make them suitable tools in nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rettberg P, Kloss M, Barczyk S, et al. Organic-inorganic Sol-gel Composites Incorporating Emiconductor Nanocrystals for Optical Gain Applications[J]. Adv. Mater., 2009, 21(17): 1 716–1720

    Article  Google Scholar 

  2. Medintz I L, Uyeda H T, Goldman E R, et al. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing[J]. Nat.Mater., 2005, 4(6): 435–446

    Article  CAS  Google Scholar 

  3. Mattoussi H, Mauro J M, Goldman E R, et al. Self-assembly of CdSe-Zns Quantum Dot Bioconjugates Using an Engineered Recombinant Protein[J]. J. Am. Chem. Soc.,2000, 122(49): 12 142–12 150

    Article  CAS  Google Scholar 

  4. Mobarraz M, Chaichi M J, Ganjali M R, et al. Functionalized ZnS Quantum Dots as Luminescent Probes for Detection of Amino Acids[J].Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2012,96: 801–804

    Article  CAS  Google Scholar 

  5. Zhang Q, Song C, Zhao T, et al. Photoluminescent Sensing for Acidic Amino Acids Based on the Disruption of Graphene Quantum Dots/Europium Ions Aggregates[J]. Biosens. Bioelectron., 2015, 65: 204–210

    Article  CAS  Google Scholar 

  6. Huang X, Li L, Qian H, et al. A Resonance Energy Transfer Between Chemiluminescent Donors and Luminescent Quantum-Dots as Acceptors (Cret)[J]. Angew. Chem. Int. Ed. Engl., 2006, 45(31): 5 140–5 143

    Article  CAS  Google Scholar 

  7. Ghrera A S, Pandey M K, Malhotra B D. Quantum Dot Monolayer for Surface Plasmon Resonance Signal Enhancement and DNA Hybridization Detection[J]. Biosens. Bioelectron, 2016, 80: 477–482

    Article  CAS  Google Scholar 

  8. Nguyen K C, Rippstein P, Tayabali A F, et al. Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes[J]. Toxicol. Sci., 2015, 146(1): 31–42

    Article  CAS  Google Scholar 

  9. Mahto S K, Yoon T H, Rhee S W. A New Perspective on in Vitro Assessment Method for Evaluating Quantum Dot Toxicity by Using Microfluidics Technology[J]. Biomicrofluidics, 2010, 4(3): 727–731

    Article  Google Scholar 

  10. Rzigalinski B A, Strobl J S. Cadmium-Containing Nanoparticles: Perspectives on Pharmacology and Toxicology of Quantum Dots[J]. Toxicol. Appl. Pharm., 2009, 238(3): 280–288

    Article  CAS  Google Scholar 

  11. Hoshino A, Fujioka K, Oku T, et al. Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on their Surface Modification[J]. Nano. Lett., 2014, 4(11): 2 163–2 169

    Article  Google Scholar 

  12. Lovrić J, Bazzi H S, Cuie Y, et al. Differences in Subcellular Distribution and Toxicity of Green and Red Emitting CdTe Quantum Dots[J]. J. Mol. Med., 2005, 83(5): 377–385

    Article  Google Scholar 

  13. Chang E, Yu W W, Colvin V L, et al. Quantifying the Influence of Surface Coatings on Quantum Dot Uptake in Cells[J]. J. Biomed. Nanotechnol., 2005, 1(4): 397–401

    Article  CAS  Google Scholar 

  14. Jaiswal J K, Mattoussi H, Mauro J M, et al. Long-Term Multiple Color Imaging of Live Cells Using Quantum Dot Bioconjugates[J]. Nat. Biotechnol., 2002, 21(1): 47–51

    Article  Google Scholar 

  15. Chan W C, Nie S. Quantum Dot Bioconjugates for Ultrasensitive Non-isotopic Detection[J]. Science, 1998, 281(5 385): 2 016–2 018

    Article  CAS  Google Scholar 

  16. Fu R P, Sun F F, Chen K Z. Preparation and Fluorescent Property of ZnO Nanoparticles[J]. Journal of Functional Materials, 2007, 38: 2 076–2 078

    Google Scholar 

  17. Zhu Z M, Chen T L, Gu Y, et al. Zinc Oxide Nanowires Grown by Vapor-phase Transport Using Selected Metal Catalysts: Acomparative Study[J]. Chem. Mater., 2005, 17(16): 4 227–4 234

    Article  CAS  Google Scholar 

  18. Li M, Zhai J, Liu H, et al. Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films[J]. J. Phys. Chem. B, 2003, 107(37): 9 954–9 957

    Article  CAS  Google Scholar 

  19. Li M, Si X J. Research Progress on Preparation and Application of Zinc Oxide[J]. Guangzhou Chemical Industry and Technology, 2010, 1: 51–53

    Google Scholar 

  20. Cao Y, Wang HJ, Cao C, et al. Synthesis and Anti-ultraviolet Properties of Monodisperse BSA-conjugated Zinc Oxide Nanoparticles[J]. Mater. Lett., 2011, 66: 340–34

    Article  Google Scholar 

  21. Wang H, Joseph J A. Quantifying Cellular Oxidative Stress by Dichlorofluorescein Assay Using Microplate Reader[J]. Free Radical. Bio. Med., 1999, 27: 612–616

    Article  CAS  Google Scholar 

  22. An X L, Li Q Z, Liu H P, et al. FT-IR Study of the Interaction between Bovine Serum Albumins and Cetyltrimethyl Ammonium Bromide[J]. Journal of Southwest China Normal University (Natural Science), 2005, 30: 699–702

    CAS  Google Scholar 

  23. Ye Q, Hu R, Lin Z Y, et al. In situ ATR-FTIR Study on the Interaction of HA with Bovine Serum Albumin[J]. Chem. Res. Chinese U., 2006, 27: 1 552–1 554

    CAS  Google Scholar 

  24. Zhuang J, Chi Y H, Liu M. Preparation and Optic Properties of Water-Soluble Zno Quantum Dots[J]. Chem. J. Chinese U., 2007, 28(12): 2 246–2 251

    CAS  Google Scholar 

  25. Liu M, Zhang J, Chi Y H. Preparation and Luminescence Properties of Zno Quantum-Dots Capped with SiO2 in Dilute Water-Free Solution[J]. Chinese J. Inorg. Chem., 2006, 22(4): 651–655

    CAS  Google Scholar 

  26. Stohs S J, Bagchi D, Hassoun E, et al. Oxidative Mechanisms in the Toxicity of Chromium and Cadmium Ions[J]. J. Environ. Pathol. Tox., 2001, 20(2): 77–88

    CAS  Google Scholar 

  27. Wim W, Beyersmann D. Cadmium-Induced Apoptosis in C6 Glioma Cells: Influence of Oxidative Stress[J]. Biometals, 2004, 17(1): 65–78

    Article  Google Scholar 

  28. Xu H, Qu F, Xu H, et al. Role of Reactive Oxygen Species in the Antibacterial Mechanism of Silver Nanoparticles on Escherichia Coli, O157:H7[J]. Biometals, 2012, 25(1): 45–53

    Article  CAS  Google Scholar 

  29. Choi A O, Brown S E, Szyf M, et al. Quantum Dot-Induced Epigenetic and Genotoxic Changes in Human Breast Cancer Cells[J]. J. Mol. Med., 2008, 86(3): 291–302

    Article  CAS  Google Scholar 

  30. Mahto S K, Park C, Yoon T H, et al. Assessment of Cytocompatibility of Surface-Modified Cdse/Znse Quantum Dots for Balb/3t3 Fibroblast Cells[J]. Toxicol. in Vitro, 2010, 24(4): 1 070–1 077

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dudu Wu  (吴都督).

Additional information

Funded by the Chinese Medicine Science & Technology Foundation of Guangdong Province (No.20151257), Medical Science and Technology Development Foundation of Guangdong Province (No.A2016355), Excellent Young Scientist Training Foundation of Guangdong Province in 2014 (No.4CX16054G), Innovation Team Construction Foundationin Ordinary University of Guangdong Province (No.2015KCXTD022), Unique Innovation Foundation in Ordinary University of Guangdong Province (No.2015KTSCX049) and Undergraduate Science & Technology Innovation Foundation of Guangdong Province (Nos. 201610571041 and 201610571015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, B., Zheng, B. et al. Assessment of Toxicity of BSA-conjugated Zinc Oxide Quantum Dots for C2C12 Cells. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 736–743 (2019). https://doi.org/10.1007/s11595-019-2111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2111-1

Key words

Navigation