Skip to main content
Log in

Thermodynamic Stability of Sulfate Ions on Calcium Aluminosilicate Hydrate Microstructure

  • Cementitious Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The thermodynamic stability of sulfate ions on synthesized calcium aluminosilicate hydrate (C-A-S-H) microstructure with different Ca/Si ratios and Al/Si ratios was investigated by XRD, SEM-EDS, 29Si and 27Al nuclear magnetic resonance (NMR) and thermodynamic modeling. The results indicate that sulfate attack leads to both decalcification and dealumination for C-A-S-H gels, and the amount of corrosion products (gypsum and ettringite) decreased gradually with decreasing Ca/Si ratios of C-A-S-H. Sulfate ions can also promote the polymerization degree of C-A-S-H gels, improving its resistance to sulfate attack. Moreover, the 4-coordination aluminum (Al[4]) in C-A-S-H, 5-coordination aluminum (Al[5]), 6-ccordination aluminum (Al[6]) in TAH (third aluminum hydrate) and Al[6] in monosulfate or C-A-H (calcium aluminate hydrate) can be transformed into Al[6] in ettringite by sulfate attack. Furthermore, through thermodynamic calculation, the decrease of Ca/Si ratios and increase of Al/Si ratios can improve the thermodynamic stability of C-A-S-H gels under sulfate attack, which agrees well with the experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor H F W. Cement Chemistry, 2nd ed[M]. London: Thomas Telford, 1997

    Book  Google Scholar 

  2. Irassar E F, Bonavetti V L, Gonzalez M. Microstructural Study of Sulfate Attack on Ordinary and Limestone Portland Cements at Ambient Temperature[J]. Cem. Concr. Res., 2003, 33(1): 31–41

    Article  Google Scholar 

  3. Kalousek G L. Crystal Chemistry of Hydrous Calcium Silicates: I. Substitution of Aluminum in Lattice of Tobermorite[J]. J. Am. Ceram. Soc., 1957, 40(3): 74–80

    Article  Google Scholar 

  4. Richardson I G, Brough A R, Brydson R, et al. Location of Aluminum in Substituted Calcium Silicate Hydrate (C-S-H) Gels as Determined by 29Si and 27Al NMR and EELS[J]. J. Am. Ceram. Soc., 1993, 76(9): 2 285–2 288

    Article  Google Scholar 

  5. Richardson I G. The Nature of CSH in Hardened Cements[J]. Cem. Concr. Res., 1999, 29(8): 1 131–1 147

    Article  Google Scholar 

  6. Richardson I G. Tobermorite/Jennite and Tobermorite/Calcium Hydroxide Based Models for the Structure of CSH: Applicability to Hardened Pastes of Tricalcium Silicate, ß-dicalcium Silicate, Portland Cement, and Blends of Portland Cement with Blast-furnace Slag, Metakaolin, or Silica Fume[J]. Cem. Concr. Res., 2004, 34(9): 1 733–1 777

    Article  Google Scholar 

  7. El-Hachem R, Rozière E, Grondin F, et al. New Procedure to Investigate External Sulphate Attack on Cementitious Materials[J]. Cem. Concr Compo., 2012, 34(3): 357–364

    Article  Google Scholar 

  8. Lothenbach B, Bary B, Bescop P L, et al. Sulfate Ingress in Portland Cement[J]. Cem. Concr Res., 2010, 40(8): 1 211–1 225

    Article  Google Scholar 

  9. Kunther W, Lothenbach B, Skibsted J. Influence of the Ca/Si Ratio of the C-S-H Phase on the Interaction with Sulfate Ions and Its Impact on the Ettringite Crystallization Pressure[J]. Cem. Concr Res., 2015, 69(1): 37–49

    Article  Google Scholar 

  10. Lippmaa E, Maegi M, Samoson A, et al. Structural Studies of Silicates by Solid-state High-resolution 29Si NMR[J]. J. Am. Chem. Soc., 1980, 102: 4 889–4 893

    Article  Google Scholar 

  11. Justnes H, Meland I, Bjoergum J O, et al. NMR-a Powerful Tool in Cement and Concrete Research[J]. Adv. Cem. Res., 1990, 3(11): 105–110

    Article  Google Scholar 

  12. Sun G K, Young J F, Kirkpatrick R J. The Role of Al in C-S-H: NMR, XRD, and Compositional Results for Precipitated Samples[J]. Cem. Concr Res., 2006, 36(1): 18–29

    Article  Google Scholar 

  13. Andersen M D, Jakobsen H J, Skibsted J. Incorporation of Aluminum in the Calcium Silicate Hydrate (C-S-H) of Hydrated Portland Cements: a High-field 27Al and 29Si MAS NMR Investigation[J]. Inorg. Chem., 2003, 42(7): 2 280–2 287

    Article  Google Scholar 

  14. Grimmer A R. Structural Investigation of Calcium Silicates from 29Si Chemical Shift Measurements[M]. In: P Colombet, A-R Grimmer (Eds.). Application of NMR Spectroscopy to Cement Science, London: Gordon and Breach, 1994

    Google Scholar 

  15. Brough A R, Dobson C M, Richardson I G, et al. In Situ Solid-state NMR Studies of Ca3SiO5: Hydration at Room Temperature Using 29Si Enrichment[J]. J. Mater Sci., 1994, 29(15): 3 926–3 940

    Article  Google Scholar 

  16. Hu C G, Hu S G, Ding Q J, et al. Effect of Curing Regime on Degree of Al3+ Substituting for Si4+ in C-S-H Gels of Hardened Portland Cement Pastes[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2014, 29(3): 546–552

    Article  Google Scholar 

  17. Faucon P, Delagrave A, Petit J C, et al. Aluminum Incorporation in Calcium Silicate Hydrates (C-S-H) Depending on Their Ca/Si Ratio[J]. J. Phys. Chem., 1999, B103: 7 796–7 802

    Article  Google Scholar 

  18. Renaudin G, Russias J, Leroux F, et al. Structural Characterization of C-S-H and C-A-S-H Samples-Part II: Local Environment Investigated by Spectroscopic Analyses[J]. J. Solid State Chem., 2009, 182(12): 3 320–3 329

    Article  Google Scholar 

  19. Andersen M D, Jakobsen H J, Skibsted. A New Aluminium-hydrate Species in Hydrated Portland Cements Characterized by 27Al and 29Si MAS NMR Spectroscopy[J]. Cem. Concr Res., 2006, 36(1): 3–17

    Article  Google Scholar 

  20. Thoenen T, Kulik D. Nagra/PSI Chemical Thermodynamic Database 01/01 for the GEMS-Selektor (V.2-PSI) Geochemical Modeling Code, PSI, Villigen[EB/OL]. http://les.web.psi.ch/software/GEMS-PSI/doc/pdf/TM-44-03-04-web.pdf, 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguang Hu  (胡晨光).

Additional information

Funded by Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University (No. JZCL201602KF), Major State Basic Research Development Program of China (973 Program) (No. 2015CB655101), State Key Laboratory of High Performance Civil Engineering Materials (No. 2015CEM005), Natural Science Foundation of Hebei Province (No. E2016209283), Hubei Key Laboratory of Roadway Bridge and Structure Engineering (Wuhan University of Technology) (No. DQZDJJ201504)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Ding, Q., Wang, H. et al. Thermodynamic Stability of Sulfate Ions on Calcium Aluminosilicate Hydrate Microstructure. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 638–647 (2019). https://doi.org/10.1007/s11595-019-2098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2098-7

Key words

Navigation