Skip to main content
Log in

Evaluation on Self-healing Mechanism and Hydrophobic Performance of Asphalt Modified by Siloxane and Polyurethane

  • Cementitious Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

In order to inhibit and remove the thin ice and extend the lifetime of the damaged bridge, the self-healing mechanism and hydrophobic performance of asphalt modified by siloxane and polyurethane (ASP) were studied by dynamic shear rheology (DSR), fluorescence microscope (FM), atomic force microscope (AFM), the fracture-healing-re-fracture test and molecular simulations. The experimental results indicated that the self-healing capability of ASP increased with increasing heating time and temperature. Furthermore, the addition of siloxane could improve the reaction energy barrier and complex modulus, and it is believed that the self-healing is a viscosity driven process, consisting of two parts namely crack closure and properties recovery. Contact angle of ASP increased with the increasing siloxane content and it deduced that the siloxane could improve the hydrophobic performance of ASP and the ASP molecule model could simulate well the self-healing mechanism and hydrophobic performance of ASP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VRIES I J D, POLDER R B. Hydrophobic Treatment of Concrete[J]. Construction & Building Materials, 1997, 11(4): 259–265

    Article  Google Scholar 

  2. TITTARELLI F, MORICONI G. The Effect of Silane-based Hydrophobic Admixture on Corrosion of Galvanized Reinforcing Steel in Concrete[J]. Corrosion Science, 2010, 52(9): 2 958–2 963

    Article  CAS  Google Scholar 

  3. MEDEIROS M, HELENE P. Efficacy of Surface Hydrophobic Agents in Reducing Water and Chloride Ion Penetration in Concrete[J]. Materials and Structures, 2008, 41(1): 59–71

    Article  CAS  Google Scholar 

  4. LIU Z, HANSEN W. Effect of Hydrophobic Surface Treatment on Freeze-thaw Durability of Concrete[J]. Cement & Concrete Composites, 2016, 69: 49–60

    Article  CAS  Google Scholar 

  5. LIU W, XU K, WANG C, et al. Carbon Nanofibers Reinforced Soy Polyol-based Polyurethane Nanocomposites[J]. Journal of Thermal Analysis and Calorimetry, 2016, 3(3): 1–10

    Google Scholar 

  6. GWON J G, KIM S K, KIM J H. Development of Cell Morphologies in Manufacturing Flexible Polyurethane Urea Foams as Sound Absorption Materials[J]. Journal of Porous Materials, 2016, 23(2): 1–9

    Article  CAS  Google Scholar 

  7. SONEBI M. Factorial Design Modelling of Mix Proportion Parameters of Underwater Composite Cement Grouts[J]. Cement & Concrete Research, 2001, 31(11): 1 553–1 560

    Article  CAS  Google Scholar 

  8. LACHEMI M, HOSSAIN K M A, LAMBROS V, et al. Performance of New Viscosity Modifying Admixtures in Enhancing the Rheological Properties of Cement Paste[J]. Cement & Concrete Research, 2004, 34(2): 185–193

    Article  CAS  Google Scholar 

  9. SUN D, HU J, ZHU X. Size Optimization and Self-healing Evaluation of Micro-capsules in Asphalt Binder[J]. Colloid and Polymer Science, 2015, 293(12): 3 505–3 516

    Article  CAS  Google Scholar 

  10. HUANG L, TAN L, ZHENG W. Renovated Comprehensive Multilevel Evaluation Approach to Self-Healing of Asphalt Mixtures[J]. International Journal of Geomechanics, 2016, 16(1): B4014 002

    Article  Google Scholar 

  11. SUN D, LIN T, ZHU X, et al. Calculation and Evaluation of Activation Energy as a Self-healing Indication of Asphalt Mastic[J]. Construction & Building Materials, 2015, 95(2): 431–436

    Article  Google Scholar 

  12. áLVARO G, SCHLANGEN E, VEN M V D, et al. A Simple Model to Define Induction Heating in Asphalt Mastic[J]. Construction & Building Materials, 2012, 31(6): 38–46

    Google Scholar 

  13. QIU J, VEN M, WU S, et al. Evaluating Self Healing Capability of Bituminous Mastics[J]. Experimental Mechanics, 2012, 52(8): 1 163–1 171

    Article  CAS  Google Scholar 

  14. QIU J, VEN M, WU S P, et al. Investigating Self-Healing Behaviour of Pure Bitumen Using Dynamic Shear Rheometer[J]. Fuel, 2011, 90(8): 2 710–2 720

    Article  CAS  Google Scholar 

  15. CHEN Y, SIMMS R, KOH C, et al. Development of a Test Method for Evaluation and Quantification of Healing in Asphalt Mixture[J]. Road Materials & Pavement Design, 2013, 14(4): 901–920

    Article  CAS  Google Scholar 

  16. CORDIER P, TOURNILHAC F, SOULIE-ZIAKOVIC C, et al. Self-healing and Thermoreversible Rubber from Supra-molecular Assembly[J]. Nature, 2008, 451(7181): 977–980

    Article  CAS  Google Scholar 

  17. WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic Healing of Polymer Composites[J]. Nature, 2001, 409(6 822): 794

    Article  CAS  Google Scholar 

  18. áLVARO G. Self-healing of Open Cracks in Asphalt Mastic[J]. Fuel, 2012, 93(1): 264–272

    Google Scholar 

  19. JONES F R, ZHANG W, HAYES S A. Thermally Induced Self Healing of Thermosetting Resins and Matrices in Smart Composites[M]. Amstel dam: Springer Netherlands, 2007

    Book  Google Scholar 

  20. VAN D Z, RIVERA P, DINGEMANS T. Modern Materials for Aerospace Applications[D]. Delft: Delft University of Technology, 2007

    Google Scholar 

  21. SMITH K A, SANDEEP T A, BALAZS A C. Healing Surface Defects with Nanoparticle-Filled Polymer Coatings: Effect of Particle Geometry[J]. Macromolecules, 2005, 38(24): 10 138–10 147

    Article  CAS  Google Scholar 

  22. SANTAGATA E, BAGLIERI O, TSANTILIS L, et al. Evaluation of Self Healing Properties of Bituminous Binders Taking into Account Steric Hardening Effects[J]. Construction & Building Materials, 2013, 41(41): 60–67

    Article  Google Scholar 

  23. LIU Q, SCHLANGEN E, VEN M, et al. Evaluation of the Induction Healing Effect of Porous Asphalt Concrete Through Four Point Bending Fatigue Test[J]. Construction & Building Materials, 2012, 29(4): 403–409

    Article  CAS  Google Scholar 

  24. LIU Q, SCHLANGEN E, VEN M. Induction Healing of Porous Asphalt Concrete Beams on an Elastic Foundation[J]. Journal of Materials in Civil Engineering, 2013, 25(7): 880–885

    Article  Google Scholar 

  25. LIU Q, WU S, SCHLANGEN E. Induction Heating of Asphalt Mastic for Crack Control[J]. Construction & Building Materials, 2013, 41(41): 345–351

    Article  Google Scholar 

  26. TANG J, LIU Q, WU S, et al. Investigation of the Optimal Self-healing Temperatures and Healing Time of Asphalt Binders[J]. Construction & Building Materials, 2016, 113: 1 029–1 033

    Article  CAS  Google Scholar 

  27. ZHOU X X, Wu S, LIU G, et al. Molecular Simulations and Experimental Evaluation on the Curing of Epoxy Bitumen[J]. Materials & Structures., 2016, 49(1–2): 241–247

    Article  CAS  Google Scholar 

  28. ZHOU X X, ZHANG X, XU S, et al. Evaluation of Thermo-mechanical Properties of Graphene/carbon- Nanotubes Modified Asphalt with Molecular Simulation[J]. Molecular Simulation, 2017, 43(4): 312–319

    Article  CAS  Google Scholar 

  29. DU Y, LI F, WANG S, et al. Inhibition and Removal of Thin Ice on the Surface of Asphalt Pavements by Hydrophobic Method[J]. Journal of Testing & Evaluation, 2016, 44(2): 20 150 106

    Article  Google Scholar 

  30. MEDEIROS M, HELENE P. Efficacy of Surface Hydrophobic Agents in Reducing Water and Chloride Ion Penetration in Concrete[J]. Materials and Structures, 2008, 41(1): 59–71

    Article  CAS  Google Scholar 

  31. KAELBLE D H, MOACANIN J. A Surface Energy Analysis of Bio-adhesion[J]. Polymer, 1977, 18(5): 475–482

    Article  CAS  Google Scholar 

  32. YANG J M, LIN H T. Wettability and Protein Adsorption on HT-PB-based Polyurethane Films[J]. Journal of Membrane Science, 2001, 187(1–2): 159–169

    Article  CAS  Google Scholar 

  33. LIU Z, HANSEN W. Effect of Hydrophobic Surface Treatment on Freeze-thaw Durability of Concrete[J]. Cement & Concrete Composites, 2016, 69: 49–60

    Article  CAS  Google Scholar 

  34. VRIES I J D, POLDER R B. Hydrophobic Treatment of Concrete[J]. Construction & Building Materials, 1997, 11(4): 259–265

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Xiao  (肖月).

Additional information

Funded by the National Natural Science Foundation of China (No. 51808329) and Science and Technology Department of Shanxi Province International Cooperation (No. 201603D421027) and the Special Project of Commercialization of Shanxi Province Research Foundation (No.201804D131034)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Sun, B., Wu, S. et al. Evaluation on Self-healing Mechanism and Hydrophobic Performance of Asphalt Modified by Siloxane and Polyurethane. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 630–637 (2019). https://doi.org/10.1007/s11595-019-2097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2097-8

Key words

Navigation