Skip to main content
Log in

Novel Visible Light Driven Magnetically Separable Graphene/BiOBr Composite Photocatalysts with Enhanced Photocatalytic Activity

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Novel visible light magnetically separable graphene-based BiOBr composite photocatalysts were prepared for the first time. The structures, morphologies and optical properties were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction and ultraviolet-visible spectroscopy, respectively. The photocatalytic activity of the resulting samples was evaluated by degradation of tetracycline under visible light irradiation. An appropriate amount of introduced graphene can significantly enhance the photocatalytic activities. The enhanced activities were mainly attributed to the enhanced light absorption and the interfacial transfer of electrons. The corresponding photocatalytic mechanism was proposed based on the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Y L, Liu Y M, Wang J S, et al. Titanium Alkoxide Induced BiOBr-Bi2WO6 Mesoporous Nanosheet Composites with Much Enhanced Photocatalytic Activity[J]. J. Mater. Chem. A, 2013, 1(27): 7 949–7 956

    Article  CAS  Google Scholar 

  2. Ao Y H, Xu J L, Wang P F, et al. Preparation of CdS Nanoparticle Loaded Flower-like Bi2O2CO3 Heterojunction Photocatalysts with Enhanced Visible Light Photocatalytic Activity[J]. Dalton T, 2015, 44(25): 11 321–11 330

    Article  CAS  Google Scholar 

  3. Cao M H, Wang P F, Ao Y H, et al. Visible Light Activated Photocatalytic Degradation of Tetracycline by a Magnetically Separable Composite Photocatalyst: Graphene Oxide/Magnetite/Cerium-doped Titania[J]. J. Colloid Interf. Sci., 2016, 467: 129–139

    Article  CAS  Google Scholar 

  4. Daimon T, Nosaka Y. Formation and Behavior of Singlet Molecular Oxygen in TiO2 Photocatalysis Studied by Detection of Near-infrared Phosphorescence[J]. J. Phys. Chem. C, 2007, 111: 4 420–4 424

    Article  CAS  Google Scholar 

  5. Nosaka Y, Daimon T, Nosaka A Y, et al. Singlet Oxygen Formation in Photocatalytic TiO2 Aqueous Suspension[J]. Phys. Chem. Chem. Phys., 2004, 6: 2 917–2 918

    Article  CAS  Google Scholar 

  6. Zhang J, Shi F J, Lin J, et al. Self-Assembled 3-D Architectures of BiOBr as a Visible Light-Driven Photocatalyst[J]. Chem. Mater., 2008, 39: 2 937–2 941

    Article  Google Scholar 

  7. Guo Y, Huang H, He Y, et al. In Situ Crystallization for Fabrication of Core-satellites Structured BiOBr-CdS Heterostructure with an Excellent Visible-Light-Responsive Photoreactivity[J]. Nanoscale, 2015, 7(27): 11 702–11 711

    Article  CAS  Google Scholar 

  8. Xia J X, Di J, Yin S, et al. Facile Fabrication of the Visible-light-driven Bi2WO6/BiOBr Composite with Enhanced Photocatalytic Activity[J]. Rsc Adv., 2013, 4: 82–90

    Article  Google Scholar 

  9. Cui W Q, An W J, Liu L, et al. Novel Cu2O Quantum Dots Coupled Flower-like BiOBr for Enhanced Photocatalytic Degradation of Organic Contaminant[J]. J. Hazard. Mater., 2014, 280: 417–427

    Article  CAS  Google Scholar 

  10. Ye L Q, Liu J Y, Jiang Z, et al. Facets Coupling of BiOBr-g-C3N4 Composite Photocatalyst for Enhanced Visible-light-driven Photocatalytic Activity[J]. Appl. Cataly. B Environ., 2013, 142(10): 1–7

    Google Scholar 

  11. Wang X J, Yang W Y, Li F T, et al. Construction of Amorphous TiO2/BiOBr Heterojunctions via Facets Coupling for Enhanced Photocatalytic Activity [J]. J. Hazard. Mater., 2015, 293: 126–136

    Article  Google Scholar 

  12. Du Q Q, Wang W P, Wu Y Z, et al. Novel Carbon Dots/BiOBr Nanocomposites with Enhanced UV and Visible Light Driven Photocatalytic Activity[J]. Rsc Adv., 2015, 5: 31 057–31 063

    Article  CAS  Google Scholar 

  13. Geim A K, Novoselov K S. The Rise of Graphene[J]. Nat. Mater., 2007, 6: 183–191

    Article  CAS  Google Scholar 

  14. Wang Y J, Liu J C, Lei L, et al. High-quality Reduced Graphene Oxide-nanocrystalline Platinum Hybrid Materials Prepared by Simultaneous Co-reduction of Graphene Oxide and Chloroplatinic Acid[J]. Nanoscale Res. Lett., 2011, 6: 1–8

    Google Scholar 

  15. Neto A H C, Guinea F, Peres N M R, et al. The Electronic Properties of Graphene[J]. Rev. Mod. Phys., 2007, 81: 109–162

    Article  Google Scholar 

  16. Watson S, Beydoun D, Amal R. Synthesis of a Novel Magnetic Photocatalyst by Direct Deposition of Nanosized TiO2 Crystals onto a Magnetic Core[J]. J. Photoch. Photobio. A, 2002, 148: 303–313

    Article  CAS  Google Scholar 

  17. Ao Y H, Xu J J, Fu D, et al. Photocatalytic Degradation of X-3B by Titania-coated Magnetic Activated Carbon under UV and Visible Irradiation[J]. J. Alloys Compd., 2009, 471: 33–38

    Article  CAS  Google Scholar 

  18. Cao C H, Xiao L, Chen C H, et al. Magnetically Separable Cu2O/Chitosan-Fe3O4 Nanocomposites: Preparation, Characterization and Visible-light Photocatalytic Performance[J]. Appl. Surf. Sci., 2015, 333: 110–118

    Article  CAS  Google Scholar 

  19. Wang C, Cao M H, Wang P F, et al. Preparation of a Magnetic Graphene Oxide-Ag3PO4 Composite Photocatalyst with Enhanced Photocatalytic Activity under Visible Light Irradiation[J]. J. Taiwan Inst. Chem. E, 2013, 45: 1 080–1 086

    Article  Google Scholar 

  20. Wang L, Wei H G, Fan Y J, et al. One-Dimensional CdS/α-Fe2O3 and CdS/Fe3O4 Heterostructures: Epitaxial and Nonepitaxial Growth and Photocatalytic Activity[J]. J. Phys. Chem. C, 2009, 113: 14 119–14 125

    Article  CAS  Google Scholar 

  21. Kong L, Jiang Z, Xiao T C, et al. Exceptional Visible-Light-Driven Photocatalytic Activity over BiOBr-ZnFe2O4 Heterojunctions[J]. Chem. Commun., 2011, 47: 5 512–5 514

    Article  CAS  Google Scholar 

  22. Wang P F, Ao Y H, Wang C, et al. A One-pot Method for the Preparation of Graphene-Bi2MoO6 Hybrid Photocatalysts that Are Responsive to Visible-Light and Have Excellent Photocatalytic Activity in the Degradation of Organic Pollutants[J]. Carbon, 2012, 50: 5 256–5 264

    Article  CAS  Google Scholar 

  23. Ai L H, Zhang C Y, Chen Z L. Removal of Methylene Blue from Aqueous Solution by a Solvothermal-Synthesized Graphene/Magnetite Composite[J]. J. Hazard. Mater., 2011, 192: 1515–1524

    Article  CAS  Google Scholar 

  24. Yang Z P, Gong X Y, Zhang C J. Recyclable Fe3O4/Hydroxyapatite Composite Nanoparticles for Photocatalytic Applications[J]. Chem. Eng. J., 2010, 165: 117–121

    Article  CAS  Google Scholar 

  25. Shang M, Wang W Z, Zhang L. Preparation of BiOBr Lamellar Structure with High Photocatalytic Activity by CTAB as Br Source and Template[J]. J. Hazard. Mater., 2009, 167: 803–809

    Article  CAS  Google Scholar 

  26. Ng Y H, Iwase A, Bell N J, et al. Semiconductor/Reduced Graphene Oxide Nanocomposites Derived from Photocatalytic Reactions[J]. Catal. Today, 2011, 164: 353–357

    Article  CAS  Google Scholar 

  27. Zhou F, Shi R, Zhu Y F. Significant Enhancement of the Visible Photocatalytic Degradation Performances of γ-Bi2MoO6 Nanoplate by Graphene Hybridization[J]. J. Mol. Catal. A: Chem., 2011, 340: 77–82

    Article  CAS  Google Scholar 

  28. Nguyen-Phan T D, Pham V H, Shin E W, et al. The Role of Graphene Oxide Content on the Adsorption-Enhanced Photocatalysis of Titanium Dioxide/Graphene Oxide Composites[J]. Chem. Eng. J., 2011, 170: 226–232

    Article  CAS  Google Scholar 

  29. Wang X W, Tian H W, Yang Y, et al. Reduced Craphene Oxide/CdS for Efficiently Photocatalystic Degradation of Methylene Blue[J]. J. Alloys Compd., 2012, 524: 5–12

    Article  CAS  Google Scholar 

  30. Ao Y H, Wang D D, Wang P F, et al. A BiOBr/Co-Ni Layered Double Hydroxide Nanocomposite with Excellent Adsorption and Photocatalytic Properties[J]. Rsc Adv., 2015, 5: 54 613–54 621

    Article  CAS  Google Scholar 

  31. Marschall, Roland. Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity[J]. Adv. Funct. Mater., 2014, 24: 2 421–2 440

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peifang Wang  (王沛芳) or Yanhui Ao  (敖燕辉).

Additional information

Funded by National Science Funds for Creative Research Groups of China (No.51421006), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13061), the National Science Fundation of China for Excellent Young Scholars (No. 51422902), the Key Program of National Natural Science Foundation of China (No. 41430751), National Science Fund for Distinguished Young Scholars (No. 51225901), the National Natural Science Foundation of China (No. 51579073), Natural Science Foundation of Jiangsu Province (No.BK20141417), Fundamental Research Funds (No. 2016B43814), and PAPD

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Wang, P. & Ao, Y. Novel Visible Light Driven Magnetically Separable Graphene/BiOBr Composite Photocatalysts with Enhanced Photocatalytic Activity. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 521–526 (2019). https://doi.org/10.1007/s11595-019-2082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2082-2

Key words

Navigation