Skip to main content
Log in

Effect of Mg on Microstructure and Growth Kinetics of Zn-22.3Al-1.1Si Coating

  • Metallic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The effects of Mg on the microstructure and growth kinetics of the hot-dip Zn-22.3Al-1.1Si-x Mg (x = 0, 0.2, 0.4, and 0.6) coatings were investigated in detail. Scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction studies revealed the presence of η-Zn, α-Al, Zn/Al eutectoid, (Si), Al/Si eutectic, and Zn/Al/Mg2Zn11 ternary eutectic on the top surface of these Mg-containing coatings. Especially, a small amount of MgZn2 phase appears in top surface of Zn-22.3Al-1.1Si-0.6Mg coating. Five phases are found in the alloy layers, i e, Fe2Al5, FeAl3, τ5C, τ5H, and τ1. The addition of 0.2% Mg can delay the emergence of FeAl3 phase. When the Mg content is more than 0.2%, the outer layers of coating change from τ5C to τ5H phase. The growth of the inhibition layer is diffusion controlled for various Mg content baths. Mg improves the corrosion resistance of the Mg-containing coatings, and the Zn-22.3Al-1.1Si-0.6Mg coating possesses the highest protective properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li SW, Gao B, Yin SH, et al. The Effects of RE and Si on the Microstructure and Corrosion Resistance of Zn–6Al–3Mg Hot Dip Coating[ J]. Applied Surface Science, 2015, 357: 2 004–2 012

    Article  Google Scholar 

  2. Padilla V, Ghods P, Alfantazi A. Effect of De–icing Salts on the Corrosion Performance of Galvanized Steel in Sulphate Contaminated Soil[J]. Construction & Building Materials, 2013, 40: 908–918

    Article  Google Scholar 

  3. Vagge ST, Raja VS, Narayanan RG. Effect of Deformation on the Electrochemical Behavior of Hot–dip Galvanized Steel Sheets[J]. Applied Surface Science, 2007, 253(20): 8 415–8 421

    Article  Google Scholar 

  4. Mandal GK, Das SK, Balasubramaniam R, et al. Evolution of Microstructures of Galvanised and Galvannealed Coatings Formed in 0.2 wt% Aluminium–Zinc Bath[J]. Materials Science and Technology, 2011, 27(8): 1 265–1 270

    Article  Google Scholar 

  5. Dutta M, Halder AK, Singh SB. Morphology and Properties of Hot Dip Zn–Mg and Zn–Mg–Al Alloy Coatings on Steel Sheet[J]. Surface and Coatings Technology, 2010, 205(7): 2 578–2 584

    Article  Google Scholar 

  6. Li SW, Gao B, Tu GF, et al. Effects of Magnesium on the Microstructure and Corrosion Resistance of Zn–55Al–1.6Si Coating[J]. Construction & Building Materials, 2014, 71: 124–131

    Article  Google Scholar 

  7. Liu W, Li MC, Luo Q, et al. Influence of Alloyed Magnesium on the Microstructure and Long–term Corrosion Behavior of Hot–dip Al–Zn–Si Coating in NaCl Solution[J]. Corrosion Science, 2016, 104: 217–226

    Article  Google Scholar 

  8. Prosek T, Nazarov A, Goodwin F, et al. Improving Corrosion Stability of Zn–Al–Mg by Alloying for Protection of Car Bodies[J]. Surface and Coatings Technology, 2016, 36: 439–447

    Article  Google Scholar 

  9. Oh MS, Kim SH, Kim JS, et al. Surface and Cut–edge Corrosion Behavior of Zn–Mg–Al Alloy–coated Steel Sheets as a Function of the Alloy Coating Microstructure[J]. Metals and Materials International, 2016, 22(1): 26–33

    Article  Google Scholar 

  10. Jiang L, Volovitch P, Wolpers M, et al. Activation and Inhibition of Zn–Al and Zn–Al–Mg Coatings on Steel by Nitrate in Phosphoric Acid Solution[J]. Corrosion Science, 2012, 60: 256–264

    Article  Google Scholar 

  11. Commenda C, Pühringer J. Microstructural Characterization and Quantification of Zn–Al–Mg Surface Coatings[J]. Materials Characterization, 2010, 61(10): 943–951

    Article  Google Scholar 

  12. Yu KC, Li J, Liu X, et al. Microstructure of Hot–dip Galvanized Zn–Al–Mg Alloy Coating[J]. Journal of Shanghai Jiaotong University (Sci.), 2012, 17: 663–667

    Article  Google Scholar 

  13. Volovitch P, Allely C, Ogle K. Understanding Corrosion via Corrosion Product Characterization: I. Case Study of the Role of Mg Alloying in Zn–Mg Coating on Steel[J]. Corrosion Science, 2009, 51(6): 1 251–1 262

    Google Scholar 

  14. Lee JY, Yun YS, Kim WT, et al. Twinning and Texture Evolution in Binary Mg–Ca and Mg–Zn Alloys[J]. Metals and Materials International, 2014, 20(5): 885–891

    Article  Google Scholar 

  15. Cho JH, Kim HW, Lim CY, et al. Microstructure and Mechanical Properties of Al–Si–Mg Alloys Fabricated by Twin Roll Casting and Subsequent Symmetric and Asymmetric Rolling[J]. Metals and Materials International, 2014, 20(4): 647–652

    Article  Google Scholar 

  16. Mondolfo LF. Aluminum Alloys: Structure and Properties[M]. Elsevier, 2013

    Google Scholar 

  17. Yeh MS, Chang JC, Chuang TH. Stress Corrosion Cracking of a Superplastic and Nonsuperplastic Zn–22.3Al Alloy in 3% NaCl Solution[J]. Journal of Materials Engineering and Performance, 1999, 8(2): 219–224

    Article  Google Scholar 

  18. Ranjan M, Tewari R, Van Ooij WJ, et al. Effect of Ternary Additions on the Structure and Properties of Coatings Produced by a High Aluminum Galvanizing Bath[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35(12): 3 707–3 720

    Article  Google Scholar 

  19. Wei DS, Tu H, Zhou SJ, et al. Effect of Silicon on the Reaction between Solid Iron and Liquid Zn–22.3wt% Al Bath[J]. Surface and Coatings Technology, 2016, 305: 29–35

    Article  Google Scholar 

  20. Li Q, Zhao YZ, Luo Q, et al. Experimental Study and Phase Diagram Calculation in Al–Zn–Mg–Si Quaternary System[J]. Journal of Alloys and Compounds, 2010, 501(2): 282–290

    Article  Google Scholar 

  21. Honda K, Yamada W, Ushioda K. Solidification Structure of the Coating Layer on Hot–dip Zn–11%Al–3%Mg–0.2%Si–Coated Steel Sheet[J]. Materials Transactions, 2008, 49(6): 1 395–1 400

    Article  Google Scholar 

  22. De Bruycker E, Zermout Z, De Cooman BC. Zn–Al–Mg Coatings: Thermodynamic Analysis and Microstructure Related Properties[J]. Materials Science Forum, 2007, 539: 1 276–1 281

    Google Scholar 

  23. Shahverdi HR, Ghomashchi MR, Shabestari S, et al. Microstructural Analysis of Interfacial Reaction Between Molten Aluminium and Solid Iron[J]. Journal of Materials Processing Technology, 2002, 124(3): 345–352

    Article  Google Scholar 

  24. Corby RN, Black PJ. The Structure of α–(AlFeSi) by Anomalous–dispersion Methods[J]. Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry, 1977, 33(11): 3 468–3 475

    Article  Google Scholar 

  25. Pontevichi S, Bosselet F, Barbeau F, et al. Solid–liquid Phase Equilibria in the Al–Fe–Si System at 727 °C[J]. Journal of Phase Equilibria and Diffusion, 2004, 25(6): 528–537

    Article  Google Scholar 

  26. Liu ZK, Chang YA. Thermodynamic Assessment of the Al–Fe–Si System[ J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30(4): 1 081–1 095

    Article  Google Scholar 

  27. Raynor GV, Rivlin VG. Phase Equilibria in Iron Ternary Alloys–A Critical Assessment of the Experimental Literature[J]. The Institute of Metals, 1 Carlton House Terrace, London SW 1 Y 5 DB, UK, 1988

    Google Scholar 

  28. Phelan D, Xu BJ, Dippenaar R. Formation of Intermetallic Phases on 55 wt.% Al–Zn–Si Hot Dip Strip[J]. Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing, 2006, 420(1): 144–149

    Article  Google Scholar 

  29. Du Y, Schuster JC, Liu ZK, et al. A Thermodynamic Description of the Al–Fe–Si System over the Whole Composition and Temperature Ranges via a Hybrid Approach of CALPHAD and Key Experiments[J]. Intermetallics, 2008, 16(4): 554–570

    Article  Google Scholar 

  30. Eleno L, Vezely J, Sundman B, et al. Assessment of the Al Corner of the Ternary Al–Fe–Si System[J]. Materials Science Forum, 2010, 649: 523–528

    Article  Google Scholar 

  31. Tu H, Song YY, Liu Y, et al. Effect of Silicon on Microstructure and Growth Kinetics of Hot–Dip Galvanized ZnAl4 Coatings[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(6): 815–821

    Google Scholar 

  32. Tang NY, Liu YH. Discussion of “Interfacial Layer in Coatings Produced in Molten Zn–Al Eutectoid Alloy Containing Si”[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36(9): 2 541–2 544

    Article  Google Scholar 

  33. Rivlin VG. and Raynor GV. 4: Critical Evaluation of Constitution of Aluminium–Iron–Silicon System[J]. International Metals Reviews, 1981, 26(1): 133–152

    Google Scholar 

  34. Haitani T, Tamura Y, Motegi T, et al. Solubility of Iron in Pure Magnesium and Cast Structure of Mg–Fe Alloy[J]. Materials Science Forum, 2003, 419: 697–702

    Article  Google Scholar 

  35. Prosek T, Nazarov A, Bexell U, et al. Corrosion Mechanism of Model Zinc–Magnesium Alloys in Atmospheric Conditions[J]. Corrosion Science, 2008, 50(8): 2 216–2 231

    Article  Google Scholar 

  36. Schürz S, Luckeneder G, Fleischanderl M, et al. Chemistry of Corrosion Products on Zn–Al–Mg Alloy Coated Steel[J]. Corrosion Science, 2010, 52(10): 3 271–3 279

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuping Su  (苏旭平).

Additional information

Funded by the National Natural Science Foundation of China (Nos. 51271040 and 51271041) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, H., Wei, D., Zhou, S. et al. Effect of Mg on Microstructure and Growth Kinetics of Zn-22.3Al-1.1Si Coating. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 373–382 (2019). https://doi.org/10.1007/s11595-019-2062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2062-6

Key words

Navigation