Effect of Modified Vermiculite on the Interface of a Capric Acid-expanded Vermiculite Composite Phase Change Material with Phase Transition Kinetics

Abstract

A new type of capric acid (CA)-acid expanded vermiculite (AEV) composite phase change material (PCM) with improved adsorption ability and interface adhesive strength was developed. Through the analysis of non-isothermal phase transition kinetics, modified vermiculite was observed to change and affect the phase transformation mechanism of the composite. AEV was treated with hydrochloric acid to improve the specific surface area and micro-pore structure. The surface area measured by BET increased from 81.94 m2/g for expanded vermiculite (EV) to 544.13 m2/g for AEV. CA-EV and CA-AEV composite PCMs were prepared by direct impregnation. The non-isothermal phase transition isotherms of CA-EV and CA-AEV were recorded by DSC at different heating rates (1, 5, 10, 15, and 20 ℃/min), which indicated that the phase transition rate increased with the heating rate and the phase transition process changed. Kinetics parameters were analyzed by a double extrapolation method. The activation energy (E) under the original state (Eα→0) of CA-AEV and CA-EV was 1 117 kJ/mol and 937 kJ/mol, respectively, and 1 205 kJ/mol and 1 016 kJ/mol under the thermal equilibrium state (Eβ→0). The most probabilistic mechanism function of CA-AEV satisfied G(α)=α2/3, which followed the Mample special rule, and the function of CA-EV satisfied G(α)=[(1+α)(1/3)−1]2, which followed the anti-Jander function.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Wei H, Xie X, Li X, et al. Preparation and Characterization of Capric Myristic–Stearic Acid Eutectic Mixture/Modified Expanded Vermiculite Composite as a Form–stable Phase Change Material [J]. Applied Energy, 2016, 178: 616–623

    CAS  Article  Google Scholar 

  2. [2]

    Yuan Y, Zhang N, Tao W, et al. Fatty Acids as Phase Change Materials: A Review [J]. Renewable & Sustainable Energy Reviews, 2014, 29(7): 482–498

    CAS  Article  Google Scholar 

  3. [3]

    Wang Z, Hu G, Zhang J, et al. Isothermal Crystallization Kinetics of Nylon 10T and Nylon 10T/1010 Copolymers: Effect of Sebacic Acid as a Third Comonomer [J]. Journal of Wuhan University of Technology–Mater. Sci. Ed., 2018, 33(5): 1 247–1 255

    CAS  Article  Google Scholar 

  4. [4]

    Karaipekli A, Sarı A. Capric–myristic Acid/Expanded Perlite Composite as Form–stable Phase Change Material for Latent Heat Thermal Energy Storage [J]. Renewable Energy, 2008, 33(12): 2 599–2 605

    CAS  Article  Google Scholar 

  5. [5]

    Sarı A, Karaipekli A. Preparation, Thermal Properties and Thermal Reliability of Capric Acid/Expanded Perlite Composite for Thermal Energy Storage [J]. Materials Chemistry & Physics, 2008, 109(2): 459–464

    Article  Google Scholar 

  6. [6]

    Li X, Wei H, Lin X, et al. Preparation of Stearic Acid/Modified Expanded Vermiculite Composite Phase Change Material with Simultaneously Enhanced Thermal Conductivity and Latent Heat [J]. Solar Energy Materials & Solar Cells, 2016, 155: 9–13

    CAS  Article  Google Scholar 

  7. [7]

    Mei D, Zhang B, Liu R, et al. Preparation of Capric Acid/Halloysite Nanotube Composite as Form–stable Phase Change Material for Thermal Energy Storage [J]. Solar Energy Materials & Solar Cells, 2011, 95(10): 2 772–2 777

    CAS  Article  Google Scholar 

  8. [8]

    Nomura T, Zhu C, Sheng N, et al. Shape–stabilized Phase Change Composite by Impregnation of Octadecane into Mesoporous SiO2 [J]. Solar Energy Materials & Solar Cells, 2015, 143: 424–429

    CAS  Article  Google Scholar 

  9. [9]

    Karaipekli A, Sarı A. Capric–myristic Acid/Expanded Perlite Composite as Form–stable Phase Change Material for Latent Heat Thermal Energy Storage [J]. Renewable Energy, 2008, 33(12): 2 599–2 605

    CAS  Article  Google Scholar 

  10. [10]

    Li M, Wu Z, Kao H. Study on Preparation, Structure and Thermal Energy Storage Property of Capric–Palmitic Acid/Attapulgite Composite Phase Change Materials [J]. Applied Energy, 2011, 88(9): 3 125–3 132

    CAS  Article  Google Scholar 

  11. [11]

    Chen Z, Feng S, Cao L, et al. Synthesis and Thermal Properties of Shape–stabilized Lauric Acid/Activated Carbon Composites as Phase Change Materials for Thermal Energy Storage [J]. Solar Energy Materials & Solar Cells, 2012, 102(7): 131–136

    CAS  Article  Google Scholar 

  12. [12]

    Karaipekli A, Sarı A. Preparation, Thermal Properties and Thermal Reliability of Eutectic Mixtures of Fatty Acids/Expanded Vermiculite as Novel Form–stable Composites for Energy Storage [J]. Journal of Industrial & Engineering Chemistry, 2010, 16(5): 767–773

    CAS  Article  Google Scholar 

  13. [13]

    Cemil Alkan, Ahmet Sarı, Ali Karaipekli. Preparation, Thermal Properties and Thermal Reliability of Micro–encapsulated–eicosane as Novel Phase Change Material for Thermal Energy Storage [J]. Energy Conversion and Management, 2011, 52(1): 687–692

    Article  Google Scholar 

  14. [14]

    Karaipekli A, Sarı A. Capric–myristic Acid/Vermiculite Composite as Form–stable Phase Change Material for Thermal Energy Storage [J]. Solar Energy, 2009, 83(3): 323–332

    CAS  Article  Google Scholar 

  15. [15]

    Gencel O, Diaz JJDC, Sutcu M, et al. Properties of Gypsum Composites Containing Vermiculite and Polypropylene Fibers: Numerical and Experimental Results [J]. Energy & Buildings, 2014, 70(2): 135–144

    Article  Google Scholar 

  16. [16]

    Li R, Zhu J, Zhou W, et al. Thermal Properties of Sodium Nitrate–Expanded Vermiculite Form–stable Composite Phase Change Materials [J]. Materials & Design, 2016, 104: 190–196

    CAS  Article  Google Scholar 

  17. [17]

    Chung O, Jeong SG, Kim S. Preparation of Energy Efficient Paraffinic PCMs/Expanded Vermiculite and Perlite Composites for Energy Saving in Buildings [J]. Solar Energy Materials & Solar Cells, 2015, 137: 107–112

    CAS  Article  Google Scholar 

  18. [18]

    Santos SSG, Silva HRM, Souza AGD, et al. Acid–Leached Mixed Vermiculites Obtained by Treatment with Nitric Acid [J]. Applied Clay Science, 2015, 104: 286–294

    CAS  Article  Google Scholar 

  19. [19]

    Machado LCR, Torchia CB, Lago RM. Floating Photocatalysts Based on TiO Supported on High Surface Area Exfoliated Vermiculite for Water Decontamination [J]. Catalysis Communications, 2006, 7(8): 538–541

    CAS  Article  Google Scholar 

  20. [20]

    Chmielarz L, Kuśtrowski P, Michalik M, et al. Vermiculites Intercalated with Al2O3, Pillars and Modified with Transition Metals as Catalysts of DeNOx, Process [J]. Catalysis Today, 2008, 137(2): 242–246

    CAS  Article  Google Scholar 

  21. [21]

    Wang L, Wang X, Cui S, et al. TiO2 Supported on Silica Nanolayers Derived from Vermiculite for Efficient Photo Catalysis [J]. Catalysis Today, 2013, 216(11): 95–103

    CAS  Article  Google Scholar 

  22. [22]

    Yu XB, Wei CH, Ke L, et al. Preparation of Trimethylchlorosilane–Modified Acid Vermiculites for Removing Diethyl Phthalate from Water [J]. Journal of Colloid & Interface Science, 2012, 369(1): 344–351

    CAS  Article  Google Scholar 

  23. [23]

    Chmielarz L, Wojciechowska M, Rutkowska M, et al. Acid–activated Vermiculites as Catalysts of the DeNOx Process [J]. Catalysis Today, 2012, 191(1): 25–31

    CAS  Article  Google Scholar 

  24. [24]

    Madejová J, Pentrák M, Pálková H, et al. Near–infrared Spectroscopy: A Powerful Tool in Studies of Acid–treated Clay Minerals [J]. Vibrational Spectroscopy, 2009, 49(2): 211–218

    Article  Google Scholar 

  25. [25]

    Steudel A, Batenburg L F, Fischer H R, et al. Alteration of Non–swelling Clay Minerals and Magadiite by Acid Activation [J]. Applied Clay Science, 2009, 44(1): 95–104

    CAS  Article  Google Scholar 

  26. [26]

    Madejová J, Bujdák J, Janek M, et al. Comparative FT–IR Study of Structural Modifications during Acid Treatment of Dioctahedral Smectites and Hectorite [J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 1998, 54(10): 1 397–1 406

    Article  Google Scholar 

  27. [27]

    Zhu X, Chen Z, Xiao B, et al. Co–pyrolysis Behaviors and Kinetics of Sewage Sludge and Pine Sawdust Blends under Non–isothermal Conditions [J]. Journal of Thermal Analysis & Calorimetry, 2015, 119(3): 2 269–2 279

    CAS  Article  Google Scholar 

  28. [28]

    Pan Y, Guan X, Feng Z, et al. Study on the Kinetic Mechanism of the Dehydration Process of FeC2O4·2H2O Using Double Extrapolation [J]. Acta Physicochemical Sinica, 1998, 14

    Google Scholar 

  29. [29]

    Santos SSG, Silva HRM, Souza AGD, et al. Acid–leached Mixed Vermiculites Obtained by Treatment with Nitric Acid [J]. Applied Clay Science, 2015, 104(104): 286–294

    CAS  Article  Google Scholar 

  30. [30]

    Fang G, Li H, Chen Z, et al. Preparation and Characterization of Stearic Acid/Expanded Graphite Composites as Thermal Energy Storage Materials [J]. Energy, 2010, 35(12): 4 622–4 626

    CAS  Article  Google Scholar 

  31. [31]

    Marystela Ferreira, Karen Wohnrath, Antonio Riul, et al. Interactions at the Molecular Level between Biphosphine Ruthenium Complexes and Stearic Acid in Langmuir and Langmuir–Blodgett Films [J]. Journal of Physical Chemistry B, 2002, 106(29)

    Google Scholar 

  32. [32]

    Li C, Fu L, Jing O, et al. Enhanced Performance and Interfacial Investigation of Mineral–based Composite Phase Change Materials for Thermal Energy Storage [J]. Science Report, 2013, 3: 1 908

    Google Scholar 

  33. [33]

    Lopes AC, Ferreira JCC, Costa CM, et al. Crystallization Kinetics of Montmorillonite/Poly(Vinylidene Fluoride) Composites and Its Correlation with the Crystalline Polymer Phase Formation [J]. Thermochimica Acta, 2013, 574(24): 19–25

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiaoqun Zhu 朱教群.

Additional information

Funded by the Major State Research Development Program of China during the 13th Five-Year Plan Period (No. 2016YFC0700904)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhu, J., Cheng, X. et al. Effect of Modified Vermiculite on the Interface of a Capric Acid-expanded Vermiculite Composite Phase Change Material with Phase Transition Kinetics. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 345–352 (2019). https://doi.org/10.1007/s11595-019-2058-2

Download citation

Key words

  • modified vermiculite
  • phase change material
  • phase transition kinetics
  • thermal storage