Skip to main content
Log in

The Self-Assembling Growth of Copper Nanowires for Transparent Electrodes

  • Metallic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Long (15 - 40 μm), thin (diameter of 20 ± 5 nm), and well-dispersed CuNWs Cu nanowires were prepared. The high-resolution TEM and selected area electron diffraction showed that the CuNWs were single-crystalline. To investigate the growth mechanism, we examined the microstructure of these CuNWs at different reaction time. It was found that the CuNWs were actually formed through the self-assembling of Cu nanoparticles along the [110] direction. The transparent electrodes fabricated using the CuNWs achieved a high transparency of 76 % at 31±5 Ω/□.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee J Y, Connor S T, Cui Y, et al. Semitransparent Organic Photovoltaic Cells with Laminated Top Electrode[J]. Nano lett., 2010, 10(4): 1 276–1 279

    Article  Google Scholar 

  2. Gomez De Arco L, Zhang Y, Schlenker C W, et al. Continuous, Highly Flexible and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics[J]. ACS Nano, 2010, 4(5): 2 865–2 873

    Article  Google Scholar 

  3. Borchert J W, Stewart I E, Ye S, et al. Effects of Length Dispersity and Film Fabrication on the Sheet Resistance of Copper Nanowire Transparent Conductors[J]. Nanoscale, 2015, 7(34): 14 496–14 504

    Article  Google Scholar 

  4. Leterrier Y, Medico L, Demarco F, et al. Mechanical Integrity of Transparent Conductive Oxide Films for Flexible Polymer–Based Display[J]. Thin Solid Films, 2004, 460(1–2): 156–166

    Article  Google Scholar 

  5. Ravi Kumar D V, Woo K, Moon J. Promising Wet Chemical Strategies to Synthesize Cu Nanowires for Emerging Electronic Applications[J]. Nanoscale, 2015, 7(41): 17 195–17 210

    Article  Google Scholar 

  6. Wang R R, Sun J, Gao L A, et al. Base and Acid Treatment of SWCNT–RNA Transparent Conductive Films [J]. ACS Nano, 2010, 4(8): 4 890–4 896

    Article  Google Scholar 

  7. Wang R R, Sun J, Gao L A, et al. Effective Post Treatment for Preparing Highly Conductive Carbon Nanotube Reduced Graphite Oxide Hybrid Films[J]. Nanoscale, 2011, 3(3): 904–906

    Article  Google Scholar 

  8. Hu L, Kim H S, Lee J Y, et al. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes[J]. ACS Nano, 2010, 4(5): 2 955–2 963

    Article  Google Scholar 

  9. Van de Lagemaat J, Barnes T M, Rumbles G, et al. Organic Solar Cells with Carbon Nanotubes Replacing Zn2O3: Sn as the Transparent Electrode[J]. App. Phys. Lett., 2006, 88(23): 233 503

    Article  Google Scholar 

  10. Kim U J, Lee I H, Bae J J, et al. Graphene/Carbon Nanotube Hybrid–Based Transparent 2D Optical Array[J]. Adv. Mater. 2011, 23(33): 3 809–3 814

    Google Scholar 

  11. De S, Higgins T M, Lyons P E, et al. Silver Nanowire Network as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios[J]. ACS Nano, 2009, 3(7): 1 767–1 774

    Article  Google Scholar 

  12. Zhang D Q, Wang R R, Wen M C, et al. Synthesis of Ultralong Copper Nanowires for High–Performance Transparent Electrode[ J]. J. Am. Chem. Soc., 2012, 134(35): 1 4283–14 286

    Article  Google Scholar 

  13. Rathmell A R, Wiley B J. The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates[J]. Adv. Chem. Soc., 2011, 23(41): 4 798–4 803

    Google Scholar 

  14. Ye S, Stewart I E, Chen Z F, et al. How Copper Nanowires Grow and How To Control Their Properties[J]. Acc. Chem. Res., 2016, 49(3): 442–451

    Article  Google Scholar 

  15. He C, Liu G, Zhang W X, et al. Tuning the Structure and Electron Transport Properties of Ultra Thin Cu Nanowire by Size and Bending Stress Using DFT and FTB Methods[J]. RSC. Adv., 2015, 5(29): 22 463–22 470

    Article  Google Scholar 

  16. Rathmell A R, Bergin S M, Hua Y L, et al. The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films[J]. Adv. Mater., 2010, 22(32): 3 558–3 563

    Article  Google Scholar 

  17. Jin S M, He G N, Zhang H, et al. Shape–Controlled Synthesis of Copper Nanocrystals in an Aqueous Solution with Glucose as a Reducing Agent and Hexadecylamine as a Capping Agent[J]. Angew. Chem. Int. Ed., 2011, 50(45): 10 560–10 564

    Article  Google Scholar 

  18. Yang H J, He S Y, Tuan H Y. Self–Seeded Growth of Five–Fold Twinned Copper Nanowires: Mechanistic Study, Characterization, and SERS Applications[J]. Langmuir, 2014, 30(2): 602–610

    Article  Google Scholar 

  19. Guo H Z, Lin N, Chen Y Z, et al. Copper Nanowires as Fully Transparent Conductive Electrodes. [J]. Sci. Rep., 2013, 3: 2 323

    Article  Google Scholar 

  20. Meng F, Jin S. The Solution Growth of Copper Nanowires and Nanotubes is Driven by Screw Dislocations[J]. Nano. Lett., 2012, 12(1): 234–239

    Article  Google Scholar 

  21. Ye S, Rathmell A R, Stewart I E, et al. A Rapid Synthesis of High Aspect Ratio Copper Nanowires for High–Performance Transparent Conducting Films[J]. Chem.Commun., 2014, 50(20): 2 562–2 564

    Article  Google Scholar 

  22. Xia Y N, Xiong Y J, Lim B, et al. Shape–Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics[ J]? Angew. Chem. Int. Ed., 2009, 48(1): 60–103

    Article  Google Scholar 

  23. Nam V B, Lee D. Copper Nanowires and Their Applications for Flexible, Transparent Conducting Films: A Review[J]. Nanomater., 2016, 6(3): 47

    Article  Google Scholar 

  24. Nandwana V, Elkins K E, Poudyal N, et al. Size and Shape Control of Monodisperse FePt Nanoparticles[J]. J. Phys. Chem. C, 2007, 111(11): 4 185–4 189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuzhi Huang  (黄福志).

Additional information

Funded by “Hundreds of Talents Program” of Hubei Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Guo, L., Wen, M. et al. The Self-Assembling Growth of Copper Nanowires for Transparent Electrodes. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 145–149 (2019). https://doi.org/10.1007/s11595-019-2028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2028-8

Key words

Navigation