Skip to main content
Log in

Effective Diffusion Energy Barriers with the Boltzmann Distribution Assumption

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

We derived revised effective diffusion energy barriers following the Boltzmann distribution assumption for impurity atoms in a bulk material under the impact of various kinds of point defects to reveal the insights of migration mechanisms. The effective diffusion energy barriers of copper impurities in bulk zirconium were calculated through the first principle method under the presented hypothesis. Our results (ΔE|| =1.27 eV, ΔE=1.31 eV) agreed well with the experimental results (ΔE|| =1.54 eV, ΔE=1.60 eV), which validated bulk diffusion as the major mechanism for copper diffusion in zirconium. The effective diffusion energy barriers could be used for estimating whether the defects will accelerate the diffusion or slow them down by acting as traps of the impurity atoms. On the other hand, the first principle results of the impurity diffusion via defects could be further used as inputs of larger scale computational simulations, such as MC (Monte Carlo) or Phase Field calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azevedo C. Selection of Fuel Cladding Material for Nuclear Fission Reactors[J]. Eng. Fail. Anal., 2011, 18(8): 1 943–1 962

    Article  Google Scholar 

  2. Garlick A, Wolfenden P. Fracture of Zirconium Alloys in Iodine Vapors[ J]. J. Nucl. Mater.,1971, 41(3): 274–292

    Article  Google Scholar 

  3. Schuster I, Lemaignan C. Influence of Texture on Iodine–Induced Stress Corrosion Cracking of Zircaloy–4 Cladding Tubes[J]. J. Nucl. Mater., 1992, 189(2): 157–166

    Article  Google Scholar 

  4. Sidky P. Iodine Stress Corrosion Cracking of Zircaloy Reactor Cladding: Iodine Chemistry(A Review)[J]. J. Nucl. Mater., 1998, 256(1): 1–17

    Article  Google Scholar 

  5. Lewis B, Thompson W, Kleczek M, et al. Modelling of Iodine–Induced Stress Corrosion Cracking in CANDU Fuel[J]. J. Nucl. Mater., 2011, 408(3): 209–223

    Article  Google Scholar 

  6. Malherbe J B. Diffusion of Fission Products and Radiation Damage in SiC[J]. J. Phys. D: App. Phys., 2013, 46(47): 473 001

    Article  Google Scholar 

  7. Kalilainen J, Krkel T, Zilliacus R, et al. Chemical Reactions of Fission Product Deposits and Iodine Transport in Primary Circuit Conditions [J]. Nucl. Eng. Des., 2014, 267: 140–147

    Article  Google Scholar 

  8. Hood G M, Schultz R J. Copper Diffusion in Single–Crystal α–Zr[J]. Phys. Rev. B, 1975, 11: 3 780

    Article  Google Scholar 

  9. Audren A, Benyagoub A, Thome L, et al. Ion Implantation of Iodine into Silicon Carbide: Influence of Temperature on The Produced Damage and on The Behavior[J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 2008, 266(12): 2 810–2 813

    Article  Google Scholar 

  10. Friedland E, van der Berg N, Malherbe J, et al. Study of Iodine Diffusion in Silicon Carbide[J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 2010, 268: 2 892–2 896

    Article  Google Scholar 

  11. Friedland E, van der Berg N, Malherbe J, et al. Investigation of Silver and Iodine Transport Through Silicon Carbide Layers Prepared for Nuclear Fuel Element Cladding[J]. J. Nucl. Mater., 2011, 410: 24–31

    Article  Google Scholar 

  12. Dwaraknath S, Was G. The Diffusion of Cesium, Strontium, and Europium in Silicon Carbide[J]. J. Nucl. Mater., 2016, 476: 155–167

    Article  Google Scholar 

  13. Dwaraknath S, Was G. Radiation Enhanced Diffusion of Cesium, Strontium, and Europium in Silicon Carbide[J]. J. Nucl. Mater., 2016, 474: 76–87

    Article  Google Scholar 

  14. Desgranges L, Riglet–Martial C, Aubrun I, et al. Evidence of Tellurium Iodide Compounds in A Power–Ramped Irradiated {UO2} Fuel Rod[J]. J. Nucl. Mater., 2013, 437: 409–414

    Article  Google Scholar 

  15. Wimmer E, Najafabadi R, Young G A, et al. Ab initio Calculations for Industrial Materials Engineering: Successes and Challenges[J]. J. Phys–Condens Mat., 2010, 22(38): 384 215

    Google Scholar 

  16. Khalil S, Swaminathan N, Shrader D, et al. Diffusion of Ag along Σ3 Grain Boundaries in 3C–SiC[J]. Phys. Rev. B, 2011, 84: 214 104

    Article  Google Scholar 

  17. Rabone J, López–Honorato E, Uffelen P V. Silver and Cesium Diffusion Dynamics at the β–SiC Σ5 Grain Boundary Investigated with Density Functional Theory Molecular Dynamics and Metadynamics[J]. Phys. Chem. A, 2014, 118: 915–926

    Article  Google Scholar 

  18. Deng J, Morgan D, Szlufarska I. Kinetic Monte Carlo Simulation of the Effective Diffusivity in Grain Boundary Networks[J]. Comput. Mater. Sci., 2014, 93: 36–45

    Google Scholar 

  19. Deng J, Ko H, Demkowicz P, et al. Grain Boundary Diffusion of Ag through Polycrystalline SiC in {TRISO} Fuel Particles[J]. J. Nucl. Mater., 2015, 467, Part 1: 332–340

    Article  Google Scholar 

  20. Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev., 1964, 136: B864–B871

    Article  Google Scholar 

  21. Kohn W, Sham L J. Self–Consistent Equations Including Exchange and Correlation Effects[J]. Phys. Rev., 1965, 140: A1 133–A1 138

    Article  Google Scholar 

  22. Rossi M L, Taylor C D. First–Principles Insights into The Nature of Zirconium–Iodine Interactions and The Initiation of Iodine–Induced Stress–Corrosion Cracking[J]. J. Nucl. Mater., 2015, 458: 1–10

    Article  Google Scholar 

  23. Christensen M, Angeliu T, Ballard J, et al. Effect of Impurity and Alloying Elements on Zr Grain Boundary Strength From First–Principles Computations[J]. J. Nucl. Mater., 2010, 404(2): 121–127

    Article  Google Scholar 

  24. Klipfel M, Uffelen P V. Ab initio Modelling of Volatile Fission Products in Uranium Mononitride[J]. J. Nucl. Mater., 2012, 422(1): 137–142

    Article  Google Scholar 

  25. Wu H H, Trinkle D R. Direct Diffusion through Interpenetrating Networks: Oxygen in Titanium[J]. Phys. Rev. Lett., 2011, 107: 045 504

    Article  Google Scholar 

  26. Wu H H, Wisesa P, Trinkle DR. Oxygen Diffusion in HCP Metals From First Principles[J]. Phys. Rev. B, 2016, 94: 014 307

    Article  Google Scholar 

  27. Shrader D, Szlufarska I, Morgan D. Cs Diffusion in Cubic Silicon Carbide[J]. J. Nucl. Mater., 2012, 421(1): 89–96

    Article  Google Scholar 

  28. Shrader D, KhalilS M, Gerczak T, et al. Ag Diffusion in Cubic Silicon Carbide[J]. J. Nucl. Mater., 2011, 408(3): 257–271

    Article  Google Scholar 

  29. Rurali R, Hernández E, Godignon P, et al. First–Principles Studies of the Diffusion of B Impurities and Vacancies in SiC[J]. Phys. Rev. B, 2004, 69(12): 125 203

    Article  Google Scholar 

  30. Ko H, Deng J, Szlufarska I, et al. Ag Diffusion in SiC High–Energy Grain Boundaries: Kinetic Monte Carlo Study with First–Principle Calculations[ J]. Comput. Mater. Sci., 2016, 121: 248–257

    Article  Google Scholar 

  31. Vineyard G H. Frequency Factors and Isotope Effects in Solid State Rate Processes[J]. J. Phys. Chem. Solids, 1957, 3(1–2): 121–127

    Article  Google Scholar 

  32. Hu X, Tu R, Wei J, et al. Nitrogen Atom Diffusion into TiO2 Anatase Bulk Via Surfaces[J]. Comput. Mater. Sci., 2014, 82: 107–113

    Article  Google Scholar 

  33. Han R, Liu L, Tu R, et al. Iodine Atom Diffusion in SiC and Zirconium With First–Principles Calculations[J]. Nucl. Tech., 2016, 195: 192–203

    Article  Google Scholar 

  34. Varvenne C, Mackain O, Clouet E. Vacancy Clustering in Zirconium: An Atomic–Scale Study[J]. Acta Mater., 2014, 78: 65–77

    Article  Google Scholar 

  35. Varvenne C, Mackain O, Proville L, et al. Hydrogen and Vacancy Clustering in Zirconium[J]. Acta Mater., 2016, 102: 56–69

    Article  Google Scholar 

  36. Hoodgm. Point Defect Diffusion in α–Zr[J]. J. Nucl. Mater., 1988, 159: 149–175

    Article  Google Scholar 

  37. Samolyuk G, Barashev A, Golubov S, et al. Analysis of the Anisotropy of Point Defect Diffusion in HCP Zr[J]. Acta Mater., 2014, 78: 173–180

    Article  Google Scholar 

  38. Jónsson H, Mills G, Jacobsen K W. Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions[M]. Singapore: World Scientific, 1998

    Book  Google Scholar 

  39. Henkelman G, Jónsson H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points[J]. J. Chem. Phys., 2000, 113: 9 978

    Article  Google Scholar 

  40. Henkelman G, Uberuaga B P, Jónsson H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths[J]. J. Chem. Phys., 2000, 113: 9 901

    Article  Google Scholar 

  41. Brog R J, Dienes G J. An Introduction to Solid State Diffusion[M]. Salt Lake City: Academic Press Inc., 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Wang  (王柱).

Additional information

Funded in Part by National Natural Science Foundation of China (Nos. 11575129 and 11275142)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, R., Wang, Z. Effective Diffusion Energy Barriers with the Boltzmann Distribution Assumption. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 1–5 (2019). https://doi.org/10.1007/s11595-019-2005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2005-2

Key words

Navigation