Skip to main content
Log in

Effects of Strains on Thermal Conductivity of Si/Ge Superlattices

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The effect of strains on the thermal conductivity of Si/Ge superlattices was investigated by nonequilibrium molecular dynamics (NEMD) simulation. The thermal conductivities experienced a near linear drop with increasing tensile and compressive strains. It was explained by the fact that the decrease of the phonons velocities and a mass of structural defects generated under strains. Meanwhile, a theoretical calculation based on Modified-Callaway model was performed and it was found that the theoretical results were in good agreement with the molecular dynamics results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V Vijayaraghavan, A Garga, C H Wong, et al. A Molecular Dynamics Based Artificial Intelligence Approach for Characterizing Thermal Transport in Nanoscale Material[J]. Thermochimica Acta, 2014, 594(20): 39–49

    Article  Google Scholar 

  2. C J Choi, N Roberts. Simple Model for Effective Thermal Conductivity of Bulk Nanostructured Materials[J]. International Journal of Thermal Sciences, 2016, 104: 13–19

    Article  Google Scholar 

  3. Srinivasan S, Millerm R S. On Parallel Nonequilibrium Molecular Dynamics Simulations of Heat Conduction in Heterogeneous Materials with Three-Body Potentials: Si/Ge Superlattice[J]. Numerical Heat Transfer Part B, 2007, 52: 297–321

    Article  Google Scholar 

  4. Y J Wang, G F Xie. Thermal Conductivity of Graphene Nanoribbons Accounting for Phonon Dispersion and Polarization[J]. Physica B: Condensed Matter, 2015, 479(15): 58–61

    Article  Google Scholar 

  5. Katika K, Pilon L. The Effect of Nanoparticles on the Thermal Conductivity of Crystalline Thin Films at Low Temperatures[J]. Journal of Applied Physics, 2008, 103: 114308

    Article  Google Scholar 

  6. Tian Z T, Hub H, Sun Y. A Molecular Dynamics Study of Effective Thermal Conductivity in Nanocomposites[J]. International Journal of Heat and Mass Transfer, 2013, 61: 577–582

    Article  Google Scholar 

  7. Zeng Y, Liu H H, Chen J, et al. Effect of Strain on the Electrical Resistance of Carbon Nanotube/Silicone Rubber Composites[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed, 2011, 26(5), 812–816

    Article  Google Scholar 

  8. Ross R G, Andersson P, Sundqvist B. Thermal Conductivity of Solids and Liquids under Pressure[J]. Reports on Progress in Physics, 1982, 47: 1347–1402

    Article  Google Scholar 

  9. Lee H F, Kumar S, Haque M A. Role of Mechanical Strain on Thermal Conductivity of Nanoscale Aluminum Films[J]. Acta Materialia, 2010, 58: 6619–6627

    Article  Google Scholar 

  10. Bhowmick S, Shenoy V B. Effect of Strain on the Thermal Conductivity of Solids[J]. The Journal of Chemical Physics, 2006, 125: 164513

    Article  Google Scholar 

  11. Zhang J, He X, Yang L. Effect of Tensile Strain on Thermal Conductivity in Monolayer Graphene Nanoribbons: A Molecular Dynamics Study[J]. Sensors, 2013, 13: 9388–9395

    Article  Google Scholar 

  12. Volz S, Saulnier J B, Chen G. Computation of Thermal Conductivity of Si/Ge Superlattices by Molecular Dynamics Techniques[J]. Microelectronic Journal, 2000, 31: 815–817

    Article  Google Scholar 

  13. Tersoff J. New Empirical Approach for the Structure and Energy of Covalent Systems[J]. Physical Review B, 1988, 37: 6991–7000

    Article  Google Scholar 

  14. P Jund, R Jullien. Molecular Dynamics Calculation of the Thermal Conductivity of Vitreous Silica[J]. Physical Review B, 1999, 59: 137004–137007

    Article  Google Scholar 

  15. Komanduri R, Chandrasekaran N, Raff L M. Molecular Dynamic Simulations of Uniaxial Tension at Nanoscale of Semiconductor Materials for Micro-Electro-Mechanical Systems (MEMS) Applications[J]. Materials Science and Engineering, 2003, 340: 58–67

    Article  Google Scholar 

  16. Rosenblum I, Adler J, A Hoffman. Molecular-Dynamics Simulation of Thermal Stress at the (100) Diamond/Substrate Interface: Effect of Film Continuity[J]. Physical Review B, 2000, 20: 2920

    Article  Google Scholar 

  17. Schelling P, Phillpot S, Keblinski P. Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity[J]. Physical Review B, 2002, 6: 144306

    Article  Google Scholar 

  18. Lee S, M Cahill, Uenkatasubramanian R. Thermal Conductivity of Si-Ge Superlattices[J]. Applied Physics Letters, 1997, 70: 2957–2959

    Article  Google Scholar 

  19. Polsky Y, Bayazitoglu Y. Derivation of the Casimir Limit Phonon Distribution Using the Boltzmann Transport Equation[J]. Journal of Heat Transfer, 1995, 117(3): 751–755

    Article  Google Scholar 

  20. Graff A, Amouyal Y. Reduced Thermal Conductivity in Niobium-Doped Calcium-Manganate Compounds for Thermoelectric Applications[J]. Applied Physics Letters, 2014, 105: 181906

    Article  Google Scholar 

  21. Palmer A, Bartkowski K, Gmelin E. Thermal Conductivity of Germanium Crystals with Different Isotopic Compositions[J]. Physical Review B, 1997, 56: 9431–9447

    Article  Google Scholar 

  22. Morelli D, Heremans J, Slack G. Estimation of the Isotope Effect on the Lattice Thermal Conductivity of Group IV and Group VIII Semiconductors[J]. Physical Review B, 2002, 66: 195304

    Article  Google Scholar 

  23. Herring C. Role of Low Energy Phonons in Thermal Conduction[J]. Physical Review, 1954, 95: 954–965

    Article  Google Scholar 

  24. Sun L, Murthy J Y. Molecular Dynamic Simulation of Phonon Scattering at Silicon/Germanium Interfaces[J]. Journal of Heat Transfer, 2010, 132: 102403

    Article  Google Scholar 

  25. Ward A, Boriodo D A. Intrinsic Lattice Thermal Conductivity of Si/Ge and GaAs/AlAs Superlattice[J]. Physical Review B, 2008, 77: 245238

    Article  Google Scholar 

  26. R E Peierls. Quantum Theory of Solids[M]. London: Oxford University Press, 1956

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingli Zhang  (张兴丽).

Additional information

Supported by the National Natural Science Foundation of China (No. 51706039)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gong, C. & Wu, G. Effects of Strains on Thermal Conductivity of Si/Ge Superlattices. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 1051–1055 (2018). https://doi.org/10.1007/s11595-018-1933-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1933-6

Key words

Navigation