Skip to main content
Log in

Electronic Structure and Optical Properties of LiBiO3 Doped with V, Nb, and Ta

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The crystal structure, band structure, density of states, Mulliken charge, bond population and optical properties for LiBi1-xMxO3 (M=V, Nb, and Ta) were investigated using hybrid density functional theory. It was found that LiBiO3 doped with V, Nb, and Ta presented distinctly stronger covalent interactions in M-O (M=V, Nb, and Ta) than Bi-O, thus resulting in mild distortion of the structure and facilitating the separation of photogenerated carriers. Furthermore, the hybridizations of Bi-6s, M-d (M=V, Nb, and Ta) and O-2p widened the valence and conduction bands, which promoted transmission of photogenerated carriers in the band edge and thus caused better photocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tong H, Ouyang SX, Bi YP, et al. Nano-photocatalytic Materials: Possibilities and Challenges[J]. Advanced Materials, 2012, 24(2): 229–251

    Article  Google Scholar 

  2. Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238: 37–38

    Article  Google Scholar 

  3. Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chemical Reviews, 1995, 95(3): 735–758

    Article  Google Scholar 

  4. Geoffrey BS, Thomas EM. Visible Light Photolysis of Hydrogen Iodide Using Sensitized Layered Metal Oxide Semiconductors: The Role of Surface Chemical Modification in Controlling Back Electron Transfer Reactions[J]. Journal of Physical Chemistry B, 1997, 101(14): 2508–2513

    Article  Google Scholar 

  5. Kim YII, Salim S, Huq MJ, et al. Visible-light Photolysis of Hydrogen Iodide using Sensitized Layered Semiconductor Particles[J]. Journal of the American Chemical Society, 1991, 113(25): 9561–9563

    Article  Google Scholar 

  6. Yoshimura J, Ebina Y, Kondo J, et al. Visible-light Induced Photocatalytic Behavior of a Layered Perovskite Type Niobate,RbPb2Nb3O10[J]. Journal Physical Chemistry, 1993, 97(9): 1970–1973

    Article  Google Scholar 

  7. Kudo A, Mikami I. New In2O3(ZnO)(m) photocatalysts with laminal structure for visible light-induced H-2 or O-2 evolution from aqueous solutions containing sacrificial reagents[J]. Chemistry Letters, 1998, 27(10): 1027–1028

    Article  Google Scholar 

  8. Inturi SNR, Boningari T, Suidan M, et al. Visible-light-induced Photodegradation of Gas Phase Acetonitrile Using Aerosol-made Transition Metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) Doped TiO2[J]. Applied Catalysis B-Environmental, 2014, 144: 333–342

    Article  Google Scholar 

  9. Weng HM, Yang XP, Dong JM, et al. Electronic Structure and Optical Properties of the Co-doped Anatase TiO2 Studied from First Principles[J]. Physical Review B, 2004, 69(12): 125219

    Article  Google Scholar 

  10. Du XS, Li QX, Su HB, et al. Electronic and Magnetic Properties of V-doped Anatase TiO2 from First Principles[J]. Physical Review B, 2006, 74(23): 233201

    Article  Google Scholar 

  11. Zhang HM, Yu XH, Mcleod JA, et al. First-principles study of Cu-doping and Oxygen Vacancy Effects on TiO2 for Water Splitting[J]. Chemical Physics Letters, 2014, 612: 106–110

    Article  Google Scholar 

  12. Li Y, Yue Y, Que ZQ, et al. Preparation and Visible-light Photocatalytic Property of Nanostructured Fe-doped TiO2 from Titanium Containing Electric Furnace Molten Slag[J]. International Journal of Minerals Metallurgy and Materials, 2013, 20(10): 1012–1020

    Article  Google Scholar 

  13. Ma X, Xue LH, Yin SM, et al. Preparation of V-doped TiO2 Photocatalysts by the Solution Combustion Method and Their Visible Light Photocatalysis Activities[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2014, 29(5): 863–868

    Article  Google Scholar 

  14. Orlin A, Konstantin L, Doriana DM. Optical and Electrical Properties of ZnO Thin Films Doped with Al, V and Nb[J]. Phys. Status Solidi, 2013, 10(4): 709–712

    Article  Google Scholar 

  15. Based on the reference Air Mass 1.5 Spectra (http://rredc.nrel.gov/solar/spectra/am1.5) and 100% Quantum Efficiency[OL]

  16. Kikugawa N, Yang LQ, Matsumoto T, et al. Photoinduced Degradation of Organic Dye over LiBiO3 under Illumination of White Fluorescent Light[J]. Journal of Materials Research, 2010, 25(1): 177–181

    Article  Google Scholar 

  17. Kumada N, Takahashi N, Kinomura N, et al. Preparation and Crystal Structure of a New Lithium Bismuth Oxide: LiBiO3[J]. Journal of Solid State Chemistry, 1996, 126(1): 121–126

    Article  Google Scholar 

  18. Walsh A, Yan Y, Huda MN, et al. Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals[J]. Chemistry of Materials, 2009, 21(3): 547–551

    Article  Google Scholar 

  19. Breckenridge RG, Hosler WR. Electrical Properties of Titanium Dioxide Semiconductor[J]. Physical Review, 1953, 91(4): 793–802

    Article  Google Scholar 

  20. Pan J W, Li C, Zhao YF, et al. Electronic Properties of TiO2 Doped with Sc, Y, La, Zr, Hf, V, Nb and Ta[J]. Chemical Physical Letters, 2015, 628: 43–48

    Article  Google Scholar 

  21. Zhang S, Xia R, Shrout TR. Modified (K0.5Na0.5)NbO3 Based Lead-free Piezoelectrics with Broad Temperature Usage Range[J]. Applied Physics Letter, 2007, 91(13): 132913

    Article  Google Scholar 

  22. Birol H, Damjanovic D, Setter N. Preparation and Characterization of (K0.5Na0.5)NbO3 Ceramics[J]. Journal of the European Ceramic Society, 2006, 26(6): 861–866

    Article  Google Scholar 

  23. Yongsiri P, Pengpat K. Materials Characterization of Potassium Sodium Niobate Based Tellurite Glass-ceramics[J]. Integrated Ferroelectrics, 2013, 141(1): 154–166

    Article  Google Scholar 

  24. Sang SJ, Yuan ZY, Zheng LM, et al. Optical Transmittance and Raman Scattering Studies of (K, Na)(Nb, Ta)O-3 Single Crystal[J]. Optical Material, 2015, 45: 104–108

    Article  Google Scholar 

  25. Heyd J, Scuseria GE, Ernzerhof M. Hybrid Functionals Based on a Screened Coulomb Potential[J]. Journal of Chemical Physics, 2003, 118(18): 8207–8215

    Article  Google Scholar 

  26. Takei T, Haramoto R, Dong Q, et al. Photocatalytic Activities of Various Pentavalent Bismuthates under Visible Light Irradiation[J]. Journal of Solid State Chemistry, 2011, 184(8): 2017–2022

    Article  Google Scholar 

  27. Paier J, Marsman M, Hummer K, et al. Screened Hybrid Density Functionals Applied to Solids[J]. Journal Chemical Physics, 2006, 124(15): 154709

    Article  Google Scholar 

  28. Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method[J]. Physical Review B, 1999, 59(3): 1758–1775

    Article  Google Scholar 

  29. Kresse G, Furthmüller J. Efficient Iterative Schemes for ab Initio total-energy Calculations Using a Plane-wave Basis Set[J]. Physical Review B, 1996, 54(16): 11169–11186

    Article  Google Scholar 

  30. Kresse G, Furthmüller J. Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set[J]. Computation Material Science, 1996, 6(1): 15–50

    Article  Google Scholar 

  31. Murnaghan FD. The Compressibility of Media under Extreme Pressures[J]. Proceedings of the National Academy of Sciences of the United States of America, 1944, 30(9): 244–247

    Article  Google Scholar 

  32. Heyd J, Scuseria GE, Ernzerhof M. Erratum: “Hybrid Functionals Based on a Screened Coulomb Potential”[J. Chem. Phys.118, 8207 (2003)][J]. Journal Chemical Physics, 2006, 124(21): 219906

    Google Scholar 

  33. Sato J, Kobayashi H, Inoue Y. Photocatalytic Activity for Water Decomposition of Indates with Octahedrally Coordinated d(10) Configuration. II. Roles of Geometric and Electronic Structures[J]. Journal of Physical Chemistry B, 2003, 107(31): 7970–7975

    Google Scholar 

  34. Qiao LP, Chai CC, Yang YT, et al. First-principles Theoretical Study on Band of Strained Wurtzite Nb-doped ZnO[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30(3): 467–472

    Article  Google Scholar 

  35. Liu JJ, Chen SF, Liu QZ, et al. Correlation of Crystal Structures and Electronic Structures with Visible Light Photocatalytic Properties of NaBiO3[J]. Chemical Physics Letters, 2013, 572: 101–105

    Article  Google Scholar 

  36. Phillips J C. Ionicity of the Chemical Bond in Crystals[J]. Reviews of Modern Physics, 1970, 42(3): 317

    Article  Google Scholar 

  37. Segall MD, Shah R, Pickard CJ, et al. Population Analysis of Planewave Electronic Structure Calculations of Bulk Materials[J]. Physical Review B, 1996, 54(23): 16317–16320

    Article  Google Scholar 

  38. Li C, Li JC, Jiang Q. Revisiting the Phillips Ionicity of Conductors and the Quantitative Determination of the Hardness of Carbides and Nitrides of Transition Metals Using the LDA+U Technique[J]. Solid State Communications, 2010, 150(37-38): 1818–1821

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Bi  (毕岗).

Additional information

Funded by the National Natural Science Foundation of China (No.61275108) and the Natural Science Foundation of Zhejiang province in China (Nos.LY15F050009 and Y111049)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Bi, G. Electronic Structure and Optical Properties of LiBiO3 Doped with V, Nb, and Ta. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 863–870 (2018). https://doi.org/10.1007/s11595-018-1905-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1905-x

Key words

Navigation