Skip to main content
Log in

Temperature Induces Self-assembly of Silicon Nano/Micro-structure based on Multi-physics Approach

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A three-dimensional dynamic model for nano/micro-fabrications of silicon was presented. With the developed model, the fabrication process of silicon on nothing (SON) structure was quantitatively investigated. We employ a diffuse interface model that incorporates the mechanism of surface diffusion. The mechanism of the fabrication is systematically integrated for high reliability of computational analysis. A semi-implicit Fourier spectral scheme is applied for high efficiency and numerical stability. Moreover, the theoretical analysis provides the guidance that is ordered by the fundamental geometrical design parameters to guide different fabrications of SON structures. The performed simulations suggest a substantial potential of the presented model for a reliable design technology of nano/micro-fabrications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sudoh K, Iwasaki H, Hiruta R, et al. Void Shape Evolution and Formation of Silicon-on-nothing Structures during Hydrogen Annealing of Hole Arrays on Si(001)[J]. Journal of Applied Physics, 2009, 105(8): 083536–083536

    Article  Google Scholar 

  2. Sudoh K, Iwasaki H, Kuribayashi H, et al. Numerical Study on Shape Transformation of Silicon Trenches by High-temperature Hydrogen Annealing[J]. Japanese Journal of Applied Physics, 2004, 43(9A): 5937–5941

    Article  Google Scholar 

  3. Sato T, Mitsutake K, Mizushima I, et al. Micro-structure Transformation of Silicon: A Newly Developed Transformation Technology for Patterning Silicon Surfaces Using the Surface Migration of Silicon Atoms by Hydrogen Annealing[J]. Japanese Journal of Applied Physics, 2000, 39(9A): 5033–5038

    Article  Google Scholar 

  4. Sato T, Mizushima I, Taniguchi S, et al. Fabrication of Silicon-on-nothing Structure by Substrate Engineering Using the Empty-space-in-silicon Formation Technique[J]. Japanese Journal of Applied Physics, 2004, 43(1): 12–18

    Article  Google Scholar 

  5. Depauw V, Gordon I, Beaucarne G, et al. Large-area Monocrystalline Silicon Thin Films by Annealing of Macroporous Arrays: Understanding and Tackling Defects in the Material[J]. Journal of Applied Physics, 2009, 106(3): 033516–10

    Article  Google Scholar 

  6. Ghannam MY, Alomar AS, Poortmans J, et al. Interpretation of Macropore Shape Transformation in Crystalline Silicon upon High Temperature Processing[J]. Journal of Applied Physics, 2010, 108(7): 074902–7

    Article  Google Scholar 

  7. Chen YJ, Kang WL. Experimental Study and Modeling of Double-surrounding-gate and Cylindrical Silicon-on-nothing MOSFETs[J]. Microelectronic Engineering, 2012, 97(3): 138–143

    Article  Google Scholar 

  8. Kilchytska V, Chung TM, Olbrechts B, et al. Electrical Characterization of True Silicon-On-Nothing MOSFETs Fabricated by Si Layer Transfer over a Pre-etched cavity[J]. Solid State Electronics, 2007, 51(9): 1238–1244

    Article  Google Scholar 

  9. Kasturi P, Saxena M, Gupta RS. Modeling and Simulation of STacked Gate Oxide (STGO) Architecture in Silicon-On-Nothing (SON) MOSFET[J]. Solid State Electronics, 2005, 49(10): 1639–1648

    Article  Google Scholar 

  10. Mueller T, Dantz D, Ammon Wv, et al. Modeling of Morphological Changes by Surface Diffusion in Silicon Trenches[J]. Journal of The Electrochemical Society, 2006, 2(2): 363

    Google Scholar 

  11. Kumari V, Manoj Saxena M, Gupta R S, et al. Simulation Study of Insulated Shallow Extension Silicon On Nothing (ISESON) MOSFET for High Temperature Applications[J]. Microelectronics Reliability, 2012, 52(8):1610–1612

    Article  Google Scholar 

  12. Kumari V, Manoj Saxena M, Gupta RS, et al. Temperature Dependent Drain Current Model for Gate Stack Insulated Shallow Extension Silicon On Nothing(ISESON) MOSFET for Wide Operating Temperature Range[J]. Microelectronics Reliability, 2012, 52(6): 974–983

    Article  Google Scholar 

  13. Kim D. Computational Analysis of the Interfacial Effect on Electromigration in Flip Chip Solder Joints[J]. Microelectronic Engineering, 2009, 86(10): 2132–2137

    Article  Google Scholar 

  14. Kim D, Lu W. Three-dimensional Model of Electrostatically Induced Pattern Formation in Thin Polymer Films[J]. Physical Review B, 2006, 73(3): 035206–7

    Article  Google Scholar 

  15. Kim D, Lu W. Creep Flow, Diffusion, and Electromigration in Small Scale Interconnects[J]. Journal of the Mechanics & Physics of Solids, 2006, 54(12): 2554–2568

    Article  Google Scholar 

  16. Kim DC, Lu W. Self-organized Nanostructures in Multi-phase Epilayers[J]. Nanotechnology, 2004, 15(5): 667–674

    Article  Google Scholar 

  17. Chen LQ. Phase-field Models for Microstructure Evolution[J]. Annual Review of Materials Research, 2002, 32(1): 113–140

    Article  Google Scholar 

  18. Lu W, Kim DC. Patterning Nanoscale Structures by Surface Chemistry[J]. Nano Letters, 2004, 4(2): 313–316

    Article  Google Scholar 

  19. Zhang L, Kim S, Kim D. Multiphysics and Multiscale Analysis for Chemotherapeutic Drug[J]. Biomed Research International, 2015, 2015(12): 493985–493999

    Google Scholar 

  20. Cahn J. Free Energy of a Nonuniform System.1. Interfacial Free Energy[J]. Journal of Chemical Physics, 1958, 28(2): 258–267

    Google Scholar 

  21. Ascher UM, Ruuth SJ, Wetton BTR. Implicit Explicit Methods for Time-Dependent Partial-Differential Equations[J]. Siam Journal on Numerical Analysis, 1995, 32(3): 797–823

    Article  Google Scholar 

  22. Herino R, Perio A, Barla K, et al. Microstructure of Porous Silicon and its Evolution with Temperature[J]. Materials Letters, 1984, 2(6): 519–523

    Article  Google Scholar 

  23. Wijaranakula W. An Experimental Estimation of Silicon Interstitial Diffusivity[J]. Journal of Applied Physics, 1990, 67(12): 7624–7627

    Article  Google Scholar 

  24. Lee MCM, Wu MC. Thermal Annealing in Hydrogen for 3-D Profile Transformation on Silicon-on-insulator and Sidewall Roughness Reduction[J]. Journal of Microelectromechanical Systems, 2006, 15(2): 338–343

    Article  Google Scholar 

  25. Kim J, Song J, Kim K, et al. Hollow Mocrotube Resonators via Silicon Self-assembly for Mass Sensing Applications[J]. Nano Letters, 2016, 2016(16): 1537–1545

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongchoul Kim.

Additional information

Funded by the National Natural Science Foundation of China(No.51775154) and the ZheJiang Provincial Natural Science Foundation of China( No. LZ15E050004)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Cheng, C., Song, J. et al. Temperature Induces Self-assembly of Silicon Nano/Micro-structure based on Multi-physics Approach. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 823–827 (2018). https://doi.org/10.1007/s11595-018-1899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1899-4

Key words

Navigation