Skip to main content
Log in

Enhanced Thermoelectric Performance of Non-equilibrium Synthesized Fe0.4Co3.6Sb12-xGex Skutterudites via Randomly Distributed Multi-scaled Impurity Dots

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The p-type Ge doped Fe0.4Co3.6Sb12-xGex skutterudites with multi-scaled impurity dots (500 nm-2 mm) were successfully prepared by using melt-quenching (MQ) and subsequent spark plasma sintering (SPS) technique. Compared with traditional method, the new technology significantly shortened the processing time from several days to less than 24 hours. The phase of impurity dots was demonstrated to be CoSb through analysis of X-ray diffraction (XRD) and energy-dispersive spectrum (EDS). Impurity dots were induced by Ge substitution of Sb in the non-equilibrium synthesized process. Due to the abandonment of the long reaction of annealing crystallization, a few of Ge atoms would fail to substitute Sb site of skutterudite in this non-equilibrium synthesized process, leading to that the multi-scaled impurity dots randomly distributed in the matrix of skutterudite Fe0.4Co3.6Sb12-xGex. The combination of multi-scaled impurity dots scattering long wavelength heat-carrying phonons and the point defect scattering short and middle wavelength heat-carrying phonons dramatically made the 22.2% reduction of lattice thermal conductivity. As a result, compared with unsubstituted sample of Fe0.4Co3.6Sb12, the maximum ZT value was increased by 30.5%. Thus, the two marked features of this new synthesis process, the shortened preparation time and the enhanced thermoelectric performance, would make a promising commercial application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell LE. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems[J]. Science., 2008, 321(5895): 1457–1461

    Article  Google Scholar 

  2. Sales BC, Mandrus D and Williams RK. Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials[J]. Science., 1996, 272(5266): 1325–1328

    Article  Google Scholar 

  3. Snyder GJ and Toberer ES. Complex Thermoelectric Materials[J]. Nat. Mater., 2008, 7(2): 105–114

    Article  Google Scholar 

  4. Zhang Q, He J, Zhu TJ, et al. High Figures of Merit and Natural Nanostructures in Mg2Si0.4Sn0.6 Based Thermoelectric Materials[J]. Appl. Phys. Lett., 2008, 93(10): 102109–1–3

    Article  Google Scholar 

  5. Nolas GS, Morelli DT, Tritt TM. Skutterudites: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications[J]. Annu. Rev. Mater. Sci., 1999, 29(1): 89–116

    Article  Google Scholar 

  6. Morelli DT, Meisner GP. Low Temperature Properties of the Filled Skutterudite CeFe4Sb12[J]. J. Appl. Phys., 1995, 77(8): 3777–3780.

    Article  Google Scholar 

  7. Nolas GS, Cohn JL, Slack GA. Effect of Partial Void Filling on the Lattice Thermal Conductivity of Skutterudites[J]. Phys. Rev. B., 1998, 58(1): 164–170

    Article  Google Scholar 

  8. Morelli D, Meisner G, Chen B, et al. Cerium Filling and Doping of Cobalt Triantimonide[J]. Phys. Rev. B., 1997, 56(12): 7376–7383

    Article  Google Scholar 

  9. Nolas GS, Kaeser M, Littleton RT, et al. High Figure of Merit in Partially Filled Ytterbium Skutterudite Materials[J]. Appl. Phys. Lett., 2000, 77 (12): 1855–1857

    Article  Google Scholar 

  10. Zhai PC, Zhao WY, Li Y, et al. Nanostructures and Enhanced Thermoelectric Properties in Ce-filled Skutterudite Bulk Materials[J]. Appl. Phys. Lett., 2006, 89(3): 1–4

    Google Scholar 

  11. Chen LD, Kawahara T, Tang XF, et al. Anomalous Barium Filling Fraction and n-type Thermoelectric Performance of BayCo4Sb12[J]. J. Appl. Phys., 2001, 90(4): 1864–1868

    Article  Google Scholar 

  12. Puyet M, Dauscher A, Lenoir B, et al. Beneficial Effect of Ni Substitution on the Thermoelectric Properties in Partially Filled CayCo4-xNixSb12 Skutterudites[J]. J. Appl. Phys., 2005, 97(8): 083712–1–4

    Article  Google Scholar 

  13. Zhao XY, Shi X, Chen LD, et al. Synthesis and Thermoelectric Properties of Sr-filled Skutterudite SryCo4Sb12[J]. J. Appl. Phys., 2006, 99(5): 053711–1–4

    Article  Google Scholar 

  14. Zhao LD, Wu HJ, Hao SQ, et al. All-scale Hierarchical Thermoelectrics: MgTe in PbTe Facilitates Valence Band Convergence and Suppresses Bipolar Thermal Transport for High Performance[J]. Energy Environ. Sci., 2013, 6(11): 3346–3355

    Article  Google Scholar 

  15. Koirala M, Zhao H, Pokharel M, et al. Thermoelectric Property Enhancement by Cu Nanoparticles in Nanostructured FeSb2[J]. Appl. Phys. Lett., 2013, 102(21): 2011–2016

    Article  Google Scholar 

  16. Tan G, Chi H, Liu W, et al. Toward High Thermoelectric Performance p-type FeSb2.2Te0.8 via in situ Formation of InSb Nanoinclusions[J]. J. Mater. Chem. C, 2015, 3(32): 8372–8380

    Article  Google Scholar 

  17. Zebarjadi M, Yang J, Lukas K, et al. Role of Phonon Dispersion in Studying Phonon Mean Free Paths in Skutterudites[J]. J. Appl. Phys., 2012, 112(4): 044305–1–7

    Article  Google Scholar 

  18. Biswas K, He JQ, Blum ID, et al. High-performance Bulk Thermoelectrics with All-scale Hierarchical Architectures[J]. Nature, 2012, 489(7416): 414–418

    Article  Google Scholar 

  19. Shi X, Yang JJ, Salvador JR, et al. Multiple-filled Skutterudites: High Thermoelectric Figure of Merit Through Separately Optimizing Electrical and Thermal Transports[J]. J. Am. Chem. Soc., 2011, 133(20): 7837–7846

    Article  Google Scholar 

  20. Su X, Li H, Yan Y, et al. The Role of Ga in Ba0.30GaxCo4Sb12+x Filled Skutterudites[J]. J. Mater. Chem., 2012, 22(31): 15628–15634

    Article  Google Scholar 

  21. Tan G, Wang S, Tang X, et al. Preparation and Thermoelectric Properties of Ga-substituted p-type Fully Filled Skutterudites CeFe4-xGaxSb12[J]. J. Solid State Chem., 2012, 196(8): 203–208

    Article  Google Scholar 

  22. Liu WS, Zhang BP, Zhao LD, et al. Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb[J]. Chem. Mater., 2008, 20(24): 7526–7531

    Article  Google Scholar 

  23. Wu T, Jiang W, Li X, et al. Effects of Ge Doping on the Thermoelectric Properties of TiCoSb-based p-type Half-Heusler Compounds[J]. J. Alloys Compd., 2009, 467(1): 590–594

    Article  Google Scholar 

  24. Duan B, Zhai P, Liu L, et al. Effects of Se Substitution on the Thermoelectric Performance of n-type Co4Sb11.3Te0.7-xSex Skutterudites[J]. Mater. Res. Bull., 2012, 47(7): 1670–1673

    Article  Google Scholar 

  25. Yu J, Zhao W, Wei P, et al. Effects of Excess Sb on Thermoelectric Properties of Barium and Indium Double-filled Iron-based p-type Skutterudite Materials[J]. J. Electron. Mater., 2012, 41(6): 1414–1420

    Article  Google Scholar 

  26. Duan B, Zhai P, Liu L, et al. Effects of Double Substitution with Ge and Te on Thermoelectric Properties of a Skutterudite Compound[J]. J. Electron. Mater., 2010, 40(5): 932–936

    Article  Google Scholar 

  27. Peng J, Yang J, Zhang T, et al. Preparation and Characterization of Fe Substituted CoSb3 Skutterudite by Mechanical Alloying and Annealing[J]. J. Alloys Compd., 2004, 381(2): 313–316

    Article  Google Scholar 

  28. Holland TJB, Redfern SAT, Street D. Unit Cell Refinement from Powder Diffraction Data: the Use of Regression Diagnostics[J]. Mineral. Mag., 1997, 61(6): 65–77

    Article  Google Scholar 

  29. Su X, Li H, Wang G, et al. Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25-xTex(x = 0.125-0.20) with in situ Nanostructure[J]. Chem. Mater., 2011, 23(10): 2948–2955

    Article  Google Scholar 

  30. Mallik RC, Mueller E, Kim IH. Thermoelectric Properties of Indium Filled and Germanium Doped Co4Sb12 Skutterudites[J]. J. Appl. Phys., 2012, 111(2): 023708–1–8

    Article  Google Scholar 

  31. Yu J, Zhao W, Zhou H et al. Rapid Preparation and Thermoelectric Properties of Ba and In Double-filled p-type Skutterudite Bulk Materials[J]. Scr. Mater., 2013, 68(8): 643–646

    Article  Google Scholar 

  32. Tan G, Zheng Y, Tang X. High Thermoelectric Performance of Nonequilibrium Synthesized CeFe4Sb12 Composite with Multi-scaled Nanostructures[J]. Appl. Phys. Lett., 2013, 103(18): 183904–1–5

    Article  Google Scholar 

  33. Sales BC, Mandrus D, Chakoumakos BC, et al. Filled Skutterudite Antimonides: Electron Crystals and Phonon Glasses[J]. Phys. Rev. B, 1997, 56(23): 15081–15089

    Article  Google Scholar 

  34. Bergman DJ, Levy O. Thermoelectric Properties of a Composite Medium[J]. J. Appl. Phys., 1991, 70(11): 6821–6833

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meijun Yang  (杨梅君).

Additional information

Funded by the National Natural Science Foundation of China(Nos.5137218 and 51521001), the 111 Project (B13035), the International Science & Technology Cooperation Program of China(2014DFA53090), the Natural Science Foundation of Hubei Province, China(2016CFA006), the Fundamental Research Funds for the Central Universities(WUT:2017II43GX,2017III032, 2017-YB-004), the Science Challenge Project (No.TZ2016001), and the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (WUT, No: 2017-KF-5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Hu, X., Yang, M. et al. Enhanced Thermoelectric Performance of Non-equilibrium Synthesized Fe0.4Co3.6Sb12-xGex Skutterudites via Randomly Distributed Multi-scaled Impurity Dots. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 772–777 (2018). https://doi.org/10.1007/s11595-018-1891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1891-z

Key words

Navigation