Skip to main content
Log in

Catalytic Decomposition of Nitric Oxide by LaCoO3 Nano-particles Prepared by Rotary CVD

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Catalytic direct decomposition of NO by perovskite-type catalysts has attracted much attention for the various possible components and the unique structure. LaCoO3 nanoparticles were precipitated on α-Al2O3 micro powders by rotary chemical vapor deposition (rotary CVD) and its catalytic performance for the decomposition of NO was investigated. LaCoO3 nano-particles with 100 nm in average diameter and 1.5% in mass were uniformly dispersed on α-Al2O3 powder. The conversion of NO increased with increasing temperature from 400 to 950 °C, and reached 28.7% at 950 °C. The gas velocity of transformed NO on LaCoO3 nano-particles catalyst per mass unit was 7.7 mL/(g min), showing a good catalytic activity over the calculated results of pure catalysts. After five times of aging performance experiments, the NO conversion kept the same value, showing a good aging performance and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Say Z, Dogac M, Vovk EI, et al. Palladium Doped Perovskite-based NO Oxidation Catalysts: The Role of Pd and B-sites for NOx Adsorption Behavior via In-situ Spectroscopy[J]. Appl. Catal. B Environ., 2014, 154-155: 51–61

    Article  Google Scholar 

  2. Wu Z, Xu L, Zhang W, et al. Structure Sensitivity of Low-temperature NO Decomposition on Au Surfaces[J]. J. Catal., 2013, 304(2): 112–122

    Article  Google Scholar 

  3. Hussain M, Fino D, Russo N. N2O Decomposition by Mesoporous Silica Supported Rh Catalysts[J]. J. Hazard. Mater., 2012, 211-212: 255–265

    Article  Google Scholar 

  4. Morikawa A, Okumura K, Ishii M, et al. Characterization of Termetallic Pt-Ir-Au Catalysts for NO Decomposition[J]. Rare Met., 2011, 30(1): 53–57

    Article  Google Scholar 

  5. Edward GT, Norman HC. The Catalytic Decomposition of Nitric Oxide at the Surface of Platinum[J]. J. Chem. Soc., 1926, 129: 1 709–1 713

    Article  Google Scholar 

  6. Hong WJ, Ueda M, Iwamoto S, et al. Synthesis of Highly Effective CeO x -MnO y -BaO Catalysts for Direct NO Decomposition[J]. Catal. Letters, 2012, 142: 32–41

    Article  Google Scholar 

  7. Hong WJ, Ueda M, Iwamoto S, et al. Effect of Fe Content on Physical Properties of BaO-CeO x -FeO y Catalysts for Direct NO Decomposition[J]. Appl. Catal. B Environ., 2011, 106(1-2): 142–148

    Google Scholar 

  8. Masui T, Uejima S, Tsujimoto S, et al. Direct NO Decomposition over C-type Cubic Y2O3-Pr6O11-Eu2O3 Solid Solutions[J]. Catal. Today, 2015, 242(PB): 338–342

    Article  Google Scholar 

  9. Tsujimoto S, Nishimura C, Masui T, et al. Direct Decomposition of Nitrogen Monoxide on (Ho, Zr, Pr)2O3+δ Catalysts[J]. Catal. Commun., 2014, 43: 84–87

    Article  Google Scholar 

  10. Tsujimoto S, Yasuda K, Masui T, et al. Effects of Tb and Ba Introduction on the Reaction Mechanism of Direct NO Decomposition over C-type Cubic Rare Earth Oxides based on Y2O3[J]. Catal. Sci. Technol., 2013, 3(8): 1 928

    Article  Google Scholar 

  11. Sajith P K, Shiota Y, Yoshizawa K. Role of Acidic Proton in the Decomposition of NOover Dimeric Cu(I) Active Sites in Cu-ZSM-5 Catalyst: A QM/MM Study[J]. ACS Catal., 2014, 4(6): 2 075–2 085

    Article  Google Scholar 

  12. Smeets PJ, Meng Q, Corthals S, et al. Co-ZSM-5 Catalysts in the Decomposition of N2O and the SCR of NOwith CH4: Influence of Preparation Method and Cobalt Loading[J]. Appl. Catal. B Environ., 2008, 84(3-4): 505–513

    Article  Google Scholar 

  13. Boroń P, Chmielarz L, Gurgul J, et al. The Influence of the Preparation Procedures on the Catalytic Activity of Fe-BEA Zeolites in SCR of NOwith Ammonia and N2O Decomposition[J]. Catal. Today, 2014, 235: 210–225

    Article  Google Scholar 

  14. Gan L, Zhong Q, Song Y, et al. La0.7Sr0.3Mn0.8Mg0.2O3-δ Perovskite Type Oxides for NO Decomposition by the Use of Intermediate Temperature Solid Oxide Fuel Cells[J]. J. Alloys Compd., 2015, 628: 390–395

    Article  Google Scholar 

  15. Ishihara T, Shinmyo Y, Goto K, et al. NO Decomposition on Ruddlesden- Popper-Type Oxide, Sr3Fe2O7, Doped with Ba and Zr[J]. Chem. Lett., 2008, 37(3): 318–319

    Article  Google Scholar 

  16. Iwakuni H, Shinmyou Y, Yano H, et al. Effects of Added CO2 and H2 on the Direct Decomposition of NOover BaMnO3-based Perovskite Oxide[J]. Bull. Chem. Soc. Jpn., 2008, 81(9): 1 175–1 182

    Article  Google Scholar 

  17. Gao L, Chua H, Kawi S. The Direct Decomposition of NOover the La2CuO4 Nanofiber Catalyst[J]. J. Solid State Chem., 2008, 181(10): 2 804–2 807

    Article  Google Scholar 

  18. Zhu J, Xiao D, Li J, et al. Perovskite-Like Mixed Oxides (LaSrMn1−x NixO4+δ, 0≤x≤1) as Catalyst for Catalytic NO Decomposition: TPD and TPR Studies[J]. Catal. Letters, 2009, 129(1-2): 240–246

    Article  Google Scholar 

  19. Penninger MW, Kim CH, Thompson LT, et al. DFT Analysis of NOOxidation Intermediates on Undoped and Doped LaCoO3 Perovskite[J]. J. Phys. Chem. C, 2015, 119(35): 20 488–20 494

    Article  Google Scholar 

  20. Li C, Han J, Zhang Z, et al. Preparation of TiO2-Coated Al2O3 Particles by Chemical Vapor Deposition in a Rotary Reactor[J]. J. Am. Ceram. Soc., 2004, 82(8): 2 044–2 048

    Article  Google Scholar 

  21. Pinilla JL, Utrilla R, Lázaro MJ, et al. A Novel Rotary Reactor Configuration for Simultaneous Production of Hydrogen and Carbon Nanofibers[J]. Int. J. Hydrogen Energy, 2009, 34(19): 8 016–8 022

    Article  Google Scholar 

  22. Zhang J, Tu R, Goto T. Spark Plasma Sintering of Al2O3-cBN Composites Facilitated by Ni Nanoparticle Precipitation on cBN Powder by Rotary Chemical Vapor Deposition[J]. J. Eur. Ceram. Soc., 2011, 31(12): 2 083–2 087

    Article  Google Scholar 

  23. Tu R, Zhu P, Zhang S, et al. Comparison of CVD-deposited Ni and Dry-blended Ni Powder as Sintering Aids for TiN Powder[J]. J. Eur. Ceram. Soc., 2014, 34(8): 1 955–1 961

    Article  Google Scholar 

  24. Michel C, Huong P VAN. Spectres Infrarouge et Raman des Pérovskites[J]. Ann. Chim., 1974, 9: 19–29

    Google Scholar 

  25. Li Z, Meng M, Zha Y, et al. Highly Efficient Multifunctional Dually- substituted Perovskite Catalysts La1−xKxCo1−yCuyO3−δ Used for Soot Combustion, NOx Storage and Simultaneous NOx-soot Removal[J]. Appl. Catal. B Environ., 2012, 121-122(x): 65–74

    Article  Google Scholar 

  26. Winter E R S. The Catalytic Decomposition of Nitric Oxide by Metallic Oxides[J]. J. Catal., 1971, 22(2): 158–170

    Article  Google Scholar 

  27. Shin S, Arakawa H, Hatakeyama Y, et al. Absorption of NOin the Lattice of an Oxygen-deficient Perovskite SrFeO3−x and the Infrared Spectroscopic Study of the System NO-SrFeO3−x[J]. Mater. Res. Bull., 1979, 14(5): 633–639

    Article  Google Scholar 

  28. Teraoka Y, Harada T, Kagawa S. Reaction Mechanism of Direct Decomposition of Nitric Oxide over Co- and Mn-based Perovskite-type Oxides[J]. J. Chem. Soc. Trans., 1998, 94(13): 1 887–1 891

    Article  Google Scholar 

  29. Zhu Y, Wang D, Yuan F, et al. Direct NO Decomposition over La2-xBaxNiO4 Catalysts Containing BaCO3 Phase[J]. Appl. Catal. B Environ., 2008, 82(3-4): 255–263

    Article  Google Scholar 

  30. Iwakuni H, Shinmyou Y, Yano H, et al. Direct decomposition of NOinto N2 and O2 on BaMnO3-based perovskite oxides[J]. Appl. Catal. B Environ., 2007, 74(3-4): 299–306

    Article  Google Scholar 

  31. Tsujimoto S, Masui T, Imanaka N. Fundamental Aspects of Rare Earth Oxides Affecting Direct NO Decomposition Catalysis[J]. Eur. J. Inorg. Chem., 2015, 2015(9): 1 524–1 528

    Article  Google Scholar 

  32. Haneda M, Tsuboi G, Nagao Y, et al. Direct Decomposition of NO over Alkaline Earth Metal Oxide Catalysts Supported on Cobalt Oxide[J]. Catal. Letters, 2004, 97(3-4): 145–150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Tu  (涂溶).

Additional information

Funded by the National Natural Science Foundation of China(Nos.51372188 and 51521001), the 111 Project (B13035), the International Science & Technology Cooperation Program of China (2014DFA53090), the Natural Science Foundation of Hubei Province, China (2016CFA006), the National Key Research and Development Program of China (2017YFB0310400), and the Fundamental Research Funds for the Central Universities (WUT: 2017II43GX, 2017III032)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Tu, R., Zhang, S. et al. Catalytic Decomposition of Nitric Oxide by LaCoO3 Nano-particles Prepared by Rotary CVD. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 368–374 (2018). https://doi.org/10.1007/s11595-018-1831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1831-x

Key words

Navigation