Skip to main content
Log in

Enhanced Ferroelectric Polarization in Laser-ablated Bi4Ti3O12 Thin Films by Controlling Preferred Orientation

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Polycrystalline Bi4Ti3O12 thin films with various fractions of a-axis, c-axis and random orientations have been grown on Pt(111)/Ti/SiO2/Si substrates by laser-ablation under different kinetic growth conditions. The relationship between the structure and ferroelectric property of the films was investigated, so as to explore the possibility of enhancing ferroelectric polarization by controlling the preferred orientation. The structural characterization indicated that the large growth rate and high oxygen background pressure were both favorable for the growth of non-c-axis oriented grains in the Bi4Ti3O12 thin films. The films with high fractions of a-axis and random orientations, i e, f (a-sxis) = 28.3% and f (random) = 69.6%, could be obtained at the deposition temperature of 973 K, oxygen partial pressure of 15 Pa and laser fluence of 4.6 J/cm2, respectively. It was also noted that the variation of ferroelectric polarization was in accordance with the evolution non-c-axis orientation. A large value of remanent polarization (2Pr = 35.5 μC/cm2) was obtained for the Bi4Ti3O12 thin films with significant non-c-axis orientation, even higher than that of rare-earth-doped Bi4Ti3O12 films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scott JF, Araujo CA. Ferroelectric Memories[J]. Science, 1989, 246(4936): 1 400–1 405

    Article  Google Scholar 

  2. Takeshi K, Sakiko S, Hironori M, et al. Ultra-thin Fatigue-free Bi4Ti3O12 Films for Nonvolatile Ferroelectric Memories[J]. Jpn. J. Appl. Phys., 1996, 35(2S): 1 246–1 250

    Google Scholar 

  3. Cummins SE, Cross LE. Electrical and Optical Properties of Ferroelectric Bi4Ti3O12 Single Crystals[J]. J. Appl. Phys., 1968, 39: 2268

    Article  Google Scholar 

  4. Schuisky M, Harsta A, Khartsev S, et al. Ferroelectric Bi4Ti3O12 Thin Films on Pt-coated Silicon by Halide Chemical Vapor Deposition[J]. J. Appl. Phys., 2000, 88(5): 2819

    Article  Google Scholar 

  5. Ruan KB, Wu GH, Liang T, et al. Structural and Electrical Characteristics of Chemical Solution Derived (Bi3.2La0.4Nd0.4) Ti3O12 Thin Films[J]. Thin Solid Films, 2008, 516(16): 5 248–5 251

    Article  Google Scholar 

  6. Guo DY, Li MY, Wang J, et al. Ferroelectric Properties of Bi3.6Ho0.4 Ti3O12 Thin Films Prepared by Sol-gel Method[J]. Appl. Phys. Lett., 2007, 91(23): 232905

    Article  Google Scholar 

  7. Chon U, Shim JS, Jang HM. Ferroelectric Properties and Crystal Structure of Praseodymium-Modified Bismuth Titanate[J]. J. Appl. Phys., 2003, 93(8): 4 769–4 775

    Article  Google Scholar 

  8. Cheng CP, Tang MH, Ye Z, et al. Microstructure and Ferroelectric Properties of Dysprosium-doped Bismuth Titanate Thin Films[J]. Mater. Lett., 2007, 61(19): 4 117–4 120

    Article  Google Scholar 

  9. Chon U, Jang HM, Kim MG, et al. Layered Perovskites with Giant Spontaneous Polarizations for Nonvolatile Memories[J]. Phys. Rev. Lett., 2002, 89(8): 087601

    Article  Google Scholar 

  10. Chen XQ, Qi HY, Qi YJ, et al. Ferroelectric and Dielectric Properties of Bismuth Neodymium Titante Ceramics Prepared Using Sol-gel Derived Fine Powders[J]. Phys. Lett. A, 2005, 346(1): 204–208

    Article  Google Scholar 

  11. Kuo DH, Chiang KC. Ferroelectric In3+-added Bi4Ti3O12 Films Obtained by Magnetron Sputtering with Two Series of In3+- and Bi3+-varied Targets[J]. Thin Solid Films, 2008, 516(18): 5 985–5 990

    Article  Google Scholar 

  12. Kao MC, Chen HZ, Young SL. Effect of Yttrium Doping on Microstructure and Ferroelectric Properties of Bi4Ti3O12 Thin Film[J]. Mater. Lett., 2008, 62(17): 3 243–3 245

    Article  Google Scholar 

  13. Takahashi K, Suzuki M, Kojima T, et al. Thickness Dependence of Dielectric Properties in Bismuth Layer-structured Dielectrics[J]. Appl. Phys. Lett., 2006, 89(8): 082901

    Article  Google Scholar 

  14. Chmielowski R, Madigou V, Ferrandis P, et al. Ferroelectric Bi3.25La0.75 Ti3O12 Thin Films on a Conductive Sr4Ru2O9 Electrode Obtained by Pulsed Laser Deposition[J]. Thin Solid Films, 2007, 515(16): 6 314–6 318

    Article  Google Scholar 

  15. Eason R. Pulsed Laser Deposition of Thin Films[M]. Wiley-Interscience, 2006

    Google Scholar 

  16. Dorrian JF, Newnham RE, Smith DK. Crystal Structure of Bi4Ti3O12[J]. Ferroelectrics, 1971, 3(1): 17–27

    Article  Google Scholar 

  17. Lu CJ, Qiao Y, Qi YJ, et al. Large Anisotropy of Ferroelectric and Dielectric Properties for Bi3.15Nd0.85Ti3O12 Thin Films Deposited on Pt/Ti/ SiO2/Si[J]. Appl. Phys. Lett., 2005, 87(22): 222901

    Article  Google Scholar 

  18. Lee HN, Hesse D, Zakharov N, et al. Ferroelectric Bi3.25La0.75Ti3O12 Films of Uniform a-axis Orientation on Silicon Substrates[J]. Science, 2002, 296(5575): 2 006–2 009

    Article  Google Scholar 

  19. Park BH, Kang BS, Bu S D, et al. Lanthanum-substituted Bismuth Titanate for Use in Non-volatile Memories[J]. Nature, 1999, 401(6754): 682–684

    Article  Google Scholar 

  20. Lee HN, Hesse D. Anisotropic Ferroelectric Properties of Epitaxially Twinned Bi3.25La0.75Ti3O12 Thin Films Grown with Three Different Orientations[J]. Appl. Phys. Lett., 2002, 80(6): 1 040

    Article  Google Scholar 

  21. Garg A, Barbr ZH, Dawber M, et al. Orientation Dependence of Ferroelectric Properties of Pulsed-Laser-Ablated Bi4-xNdxTi3O12 Films[J]. Appl. Phys. Lett., 2003, 83(12): 2 414–2 416

    Article  Google Scholar 

  22. Hu GD, Fan SH, Cheng X. Anisotropy of Ferroelectric and Piezoelectric Properties of Bi3.15Pr0.85Ti3O12 Thin Films on Pt(100)/Ti/SiO2/Si Substrates[J]. J. Appl. Phys., 2007(5), 101: 054111

    Article  Google Scholar 

  23. Hu GD. Orientation Dependence of Ferroelectric and Piezoelectric Properties of Bi3.15Nd0.85Ti3O12 Thin Films on Pt(100)/TiO2/SiO2/Si Substrates[J]. J. Appl. Phys., 2006, 100: 096109

    Article  Google Scholar 

  24. Zhang ST, Zhang XJ, Cheng HW, et al. Enhanced Electrical Properties of c-axis Epitaxial Nd-substituted Bi4Ti3O12 Thin Films[J]. Appl. Phys. Lett., 2003, 83(21): 4 378

    Article  Google Scholar 

  25. Watanabe T, Funakubo H, Mizuhira M, et al. Site Definition and Characterization of La-substituted Bi4Ti3O12 Thin Films Prepared by Metalorganic Chemical Vapor Deposition[J]. J. Appl. Phys., 2001, 90(12): 6 533

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanbin Wang  (王传彬).

Additional information

Funded by the International Science and Technology Cooperation Project of Hubei Province (2016AHB008), the Natural Science Foundation of Hubei Province (2015CFB724, 2016CFA006), the National Natural Science Foundation of China (51272195, 51521001) and the National Key Research and Development Program of China (2017YFB0310400)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Luo, S., Shen, Q. et al. Enhanced Ferroelectric Polarization in Laser-ablated Bi4Ti3O12 Thin Films by Controlling Preferred Orientation. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 268–272 (2018). https://doi.org/10.1007/s11595-018-1816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1816-9

Key words

Navigation