Skip to main content
Log in

Effect of carrier liquid on electrorheological performance and stability of oxalate group-modified TiO2 suspensions

  • Cementitious materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

By using oxalate group-modified TiO2 nanoparticles as the dispersing phase, different kinds of silicone oil with various viscosities and terminal groups (hydroxyl, hydrogen, and methyl) were used as the dispersing media to prepare different electrorheological (ER) fluids. Their zero-field viscosity, yield stress under direct current electric fields, ER efficiency, shear stability, leakage current density, and sedimentation stability were tested to study the effect of carrier liquid on the properties of ER fluids. The results indicate that the zero-field viscosity, the yield stress, and the leakage current density increase with increasing viscosity of the silicone oils. The effects of the viscosity on the ER efficiency, the shear stability, and the sedimentation ratio depend on the competition between the viscous resistance and the aggregation of the particles. Among the three ER fluids prepared with silicone oil with different terminal groups, hydroxyl-terminated oil based sample has the highest zero-field viscosity, the highest field-induced yield stress and ER efficiency, the largest current density, and the best sedimentation stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winslow WM. Induced Fibration of Suspensions[J]. Journal of Applied Physics, 1949, 20: 1137–1140

    Article  Google Scholar 

  2. Lu KQ, Shen R, Wang XZ, et al. The Electrorheological Fluids with High Yield Stress[J]. International Journal of Modern Physics B, 2005, 19: 1065–1070

    Article  Google Scholar 

  3. Dong XF, Ma N, QI M, et al. Properties of Magneto-Rheological Fluids based on Amorphous Micro-Particles[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: 2979–2983

    Article  Google Scholar 

  4. Tan P, Tian WJ, Wu XF, et al. Saturated Orientational Polarization of Polar Molecules in Giant Electrorheological Fluids[J]. J. Phys. Chem. B, 2009, 113: 9092–9097

    Article  Google Scholar 

  5. Huo L, Li JR, Liao TH. The Comparison between Carboxyl, Amido and Hydroxy Group in Influencing Electrorheological Performance[J]. Korea-Australia Rheology Journal, 2011, 23: 17–23

    Article  Google Scholar 

  6. Jiang J, Tian Y, Meng Y. Structure Parameter of Electrorheological Fluids in Shear Flow[J]. Langmuir, 2011, 27: 5814–5823

    Article  Google Scholar 

  7. Choi HJ, Cho MS, Kim JW, et al. A Yield Stress Scaling Function for Electrorheological Fluids[J]. Appl. Phys. Lett., 2001, 78: 3806–3808

    Article  Google Scholar 

  8. Wu XF, Zhou LW, Huang JP. The Electrode Effect on Polar Molecule Dominated Electrorheological Fuids[J]. Materials and Design, 2009, 30: 4521–4524

    Article  Google Scholar 

  9. Wen WJ, Huang XX, Yang SH, et al. The Giant Electrorheological Effect in Suspensions of Nanoparticles[J]. Nature Materials, 2003, 2: 727–730

    Article  Google Scholar 

  10. Shen R, Wang XZ, Lu Y, et al. Polar-molecule-dominated Electrorheological Fluids Featuring High Yield Stresses[J]. Advanced materials, 2009, 21: 1–5

    Google Scholar 

  11. Huang X, Wen WJ, Yang SH, et al. Mechanisms of the Giant Electrorheological Effect[J]. Solid State Communications, 2006, 139: 581–588

    Article  Google Scholar 

  12. Zhao Y, Wang BX, Zhao XP. Synthesis and Electrorheological Properties of Modified TiO2 Nanoparticles[J]. Acta Materiae Compositae Sinica, 2006, 23: 96–102

    Google Scholar 

  13. Bao W, Zheng J, Wu XF. Short Axis Contact in the Chaining of Ellipsoidal Particles of Polar Molecule Dominated Electrorheological Fluid [J]. Journal of Physics, 2012, 22: 1–6

    Google Scholar 

  14. Krzton-maziopa A, Gorkier M, Plocharski J. ER Suspensions of Composite Core-Shell Microspheres with Improved Sedimentation Stability[J]. Polymers for Advanced Technologies, 2012, 23: 702–709

    Article  Google Scholar 

  15. Wu JH, Liu FH, Guo JJ, et al. Preparation and Electrorheological Characteristics of Uniform Core/Shell Structural Particles with Different Polar Molecules Shells[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410: 136–143

    Article  Google Scholar 

  16. Wei JH, Zhao LH, Peng S L, et al. Wettability of Urea-doped TiO2 Nanoparticles and Their High Electrorheological Effects[J]. Journal of Sol-Gel Science and Technology, 2008, 47: 311–335

    Article  Google Scholar 

  17. Cao JG, Shen M, Zhou LW. Preparation and Electrorheological Properties of Triethanolamine-modified TiO2[J]. Journal of Solid State Chemistry, 2006, 179: 1565–1568

    Article  Google Scholar 

  18. Liu FH, Xu GJ, Wu JH, et al. Preparation and Electrorheological Properties of a Hydroxyl Titanium Oxalate Suspension[J]. Smart Materials and Structures, 2009, 18: 125015

    Article  Google Scholar 

  19. Wang LM, Gong XQ, Wen WJ. Electrorheological Fluid and its Applications in Microfluidics[J]. Top Curr Chem, 2011, 304: 91–115

    Article  Google Scholar 

  20. Yoshida K, Kamiyama K, Kim JW, et al. An Intelligent Microactuator Robust Against Disturbance Using Electro-rheological Fluid[J]. Sensors and Actuators A, 2012, 175: 101–107

    Article  Google Scholar 

  21. Nikitczuk J, Weinberg B, Canavan PK, et al. Active Knee Rehabilitation Orthotic Device with Variable Damping Characteristics Implemented via an Electrorheological Fluid[J]. IEEE/ASME Transactions on Menhatronics, 2010, 15: 952–960

    Google Scholar 

  22. Qiao YP, Yin JB, Zhao XP. Oleophilicity and the Strong Electrorheological Effect of Surface-modified Titanium Oxide Nanoparticles[J]. Smart Materials and Structures, 2007, 16: 332–339

    Article  Google Scholar 

  23. Wu CW, Conrad H. Shear Strength of Electrorheological Particle Clusters [J]. Materials Science and Engineering: A, 1998, 248: 161–164

    Article  Google Scholar 

  24. Yin JB, Xia X, Xiang LQ, et al. Temperature Effect of Electrorheological Fluids based on Polyaniline Derived Carbonaceous Nanotubes[J]. Smart Materials and Structures, 2011, 20: 015002

    Article  Google Scholar 

  25. Dong XF, Zhao H, Qi M, et al. Titanium Glycerolate-based Electrorheological Fluids with Stable Properties[J]. Materials Research Express, 2014, 1: 025709

    Article  Google Scholar 

  26. Hong JY, Choi M, Kim C, et al. Geometrical Study of Electrorheological Activity with Shape-controlled Titania-coated Silica Nanomaterials[J]. Journal of Colloid and Interface Science, 2010, 347: 177–182

    Article  Google Scholar 

  27. Yin JB, Zhao XP, Xiang LQ, et al. Enhanced Electrorheology of Suspensions Containing Sea-urchin-like Hierarchical Cr-doped Titania Particles[J]. Soft Matter, 2009, 5: 4687–4697

    Article  Google Scholar 

  28. Niu CG, Dong XF, Zhao H, et al. Properties of Aniline-modified Strontium Titanyl Oxalate-based Electrorheological Suspension[J]. Smart Materials and Structures, 2014, 23: 075018

    Article  Google Scholar 

  29. Qi Y, Wen W. Influences of Geometry of Particles on Electrorheological Fluids [J]. Journal of Physics D: Applied Physics, 2002, 35: 2231–2235

    Article  Google Scholar 

  30. Cheng YC, Wu KH, Liu FH, et al. Facile Approach to Large-scale Synthesis of 1D Calcium and Titanium Precipitate (CTP) with High Electrorheological Activity[J]. ACS Applied Materials & Interfaces, 2010, 2: 621–625

    Article  Google Scholar 

  31. Lu Y, Shen R, Wang XZ, et al. The Synthesis and Electrorheological Effect of a Strontium Titanyl Oxalate Suspension[J]. Smart Materials and Structures, 2009, 18: 025012

    Article  Google Scholar 

  32. Wang XZ, Shen R, Wen WJ, et al. High Performance Calcium Titanate Nanoparticle ER Fluids[J]. International Journal of Modern Physics B, 2005, 19: 1110–1113

    Article  Google Scholar 

  33. Gong XG, Wu JB, Wen WJ. Influence of Liquid Phase on Nanoparticlebased Giant Electrorheological Fluid[J]. Nanotechnology, 2008, 19:1–6

    Google Scholar 

  34. Liu FH, Xu GJ, Wu JH, et al. Synthesis and Electrorheological Properties of Oxalate Group-modified Amorphous Titanium Oxide Nanoparticles[J]. Colloid Polym. Sci., 2010, 288: 1739–1744

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufeng Dong  (董旭峰).

Additional information

Funded by the National Natural Science Foundation of China (51478088)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, N., Dong, X. Effect of carrier liquid on electrorheological performance and stability of oxalate group-modified TiO2 suspensions. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 854–861 (2017). https://doi.org/10.1007/s11595-017-1679-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1679-6

Key words

Navigation