Skip to main content
Log in

Nature of the pull-out system of carbon nanorope/polyethylene composite and twisting effect on interfacial behavior

  • Organic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The nature of the pull-out system of carbon nanorope/polyethylene (CNRP/PE) composite is studied by using molecular dynamics approach. The deformation of the CNRP/PE composites in pull-out process is exhibited. The influence of twisting deformation on the interfacial interaction of the composites is investigated. The results show that the energy of the pull-out system is conserved; and the interfacial bonding is weak resulting in a sliding failure of the CNRP inside PE matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S, Ichihashi T. Single-Shell Carbon Nanotubes of 1-nm Diameter[J]. Nature, 1993, 363: 603–605

    Article  Google Scholar 

  2. Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes[J]. Nature, 1996, 381: 678–680

    Article  Google Scholar 

  3. Wong E W, Sheehan P E, Lieber C M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes[J]. Science, 1997, 277: 1971–1975

    Article  Google Scholar 

  4. Yang N, Xu X, Zhang G, et al. Thermal Transport in Nanostructures[J]. AIP Advances, 2012, 2(4): 041410

    Article  Google Scholar 

  5. Kim P, Shi L, Majumdar A, et al. Thermal Transport Measurements of Individual Multiwalled Nanotubes[J]. Physical Review Letters, 2001, 87(21): 215502

    Article  Google Scholar 

  6. Zhang G, Li B W. Thermal Conductivity of Nanotubes Revisited: Effects of Chirality, Isotope Impurity, Tube Length, and Temperature[J]. The Journal of Chemical Physics, 2005, 123(11): 114714

    Article  Google Scholar 

  7. Maruyama S. A Molecular Dynamics Simulation of Heat Conduction of a Finite Length Single-Walled Carbon Nanotube[J]. Microscale Thermophysical Engineering, 2003, 7(1): 41–50

    Article  Google Scholar 

  8. Ata S, Mizuno T, Nishizawa A, et al. Influence of Matching Solubility Parameter of Polymer Matrix and CNT on Electrical Conductivity of CNT/Rubber Composite[J]. Scientific Reports, 2014, 4: 7232–7239

    Article  Google Scholar 

  9. Koziol K, Vilatela J, Moisala A, et.al. High-Performance Carbon Nanotube Fiber[J]. Science, 2007, 318(5858): 1892–1895

    Article  Google Scholar 

  10. Nakamoto H, Ootaka H, Tada M, et al. Stretchable Strain Sensor Based on a Real Change of Carbon Nanotube Electrode[J]. Science, 2015, 15(4): 2212–2218

    Google Scholar 

  11. Wang Q. Atomic Transportation via Carbon Nanotubes[J]. Nano Letters, 2009, 9: 245–249

    Article  Google Scholar 

  12. Wu N, Wang Q, Arash B. Ejection of DNA Molecules from Carbon Nanotubes[J]. Carbon, 2012, 50: 4945–4952

    Article  Google Scholar 

  13. Li M, Myers E B, Tang H, et al. Nano Electromechanical Resonator Arrays for Ultrafast, Gas-Phase Chromatographic Chemical Analysis[J]. Nano Letters, 2010, 10: 3899–3903

    Article  Google Scholar 

  14. Gojny F H, Wichmann M H G, Fiedler B, et al. Influence of Nano- Modification on Themechanical and Electrical Properties of Conventional Fibre Reinforced Composites[J]. Composites Part A, 2005, 36(11): 1525–1535

    Article  Google Scholar 

  15. Arash B, Wang Q. Mechanical Properties of Carbon Nanotube/Polymer Composites[J]. Scientific Reports, 2014, 4: 6479–6486

    Article  Google Scholar 

  16. Zhu R, Pan E, Roy A K. Molecular Dynamics Study of the Stress- Strain Behavior of Carbon-Nanotube Reinforced Epon 862 Composites[J]. Materials Science and Engineering A, 2007 (447): 51–57

    Article  Google Scholar 

  17. Najafi E, Kim J Y, Han S H, et al. UV-Ozone Treatment of Multi- Walled Carbon Nanotubes for Enhanced Organic Solvent Dispersion[J]. Colloids and Surfaces A, 2006, 284–285: 373–378

    Article  Google Scholar 

  18. Needleman A, Borders T, Brinson L C, et al. Effect of an Interphase Region on Debonding of a CNT Reinforced Polymer Composite[J]. Journal of Computer Science and Technology, 2010, 70: 2207–2215

    Article  Google Scholar 

  19. Tsai J L, Tzeng S H, Chiu Y T. Characterizing Elastic Properties of Carbon Nanotubes/Polyimide Nanocomposites Using Multi-Scale Simulation[J]. Composites Part B-Engineering, 2010, 41(1): 106–115

    Article  Google Scholar 

  20. Shokrieh M M, Rafiee R. Prediction of Mechanical Properties of an Embedded Carbon Nanotube in Polymer Matrix Based on Developing an Equivalent Long Fiber[J]. Mechanics Research Communications, 2010, 37(2): 235–240

    Article  Google Scholar 

  21. Hu N, Fukunaga H, Lu C, et al. Prediction of Elastic Properties of Carbon Nanotube Reinforced Composites[J]. Proceedings of the Royal Society A, 2005, 461(2058): 1685–1710

    Article  Google Scholar 

  22. Pissis P, Fragiadakis D, Kanapitsas A, et al. Broadband Dielectric Relaxation Spectroscopy in Polymer Nanocomposites[J]. Macromolecular Symposia, 2008, 265: 285–293

    Article  Google Scholar 

  23. Eitan A, Fisher F T, Andrews R, et al. Reinforcement Mechanisms in MWCNT-Filled Polycarbonate[J]. Composites Science and Technology, 2006, 66: 1159–1170

    Article  Google Scholar 

  24. Qian D, Dickey E C, Andrews R, et al. Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites[J]. Applied Physics Letters, 2000, 76: 2868

    Article  Google Scholar 

  25. Gou J, Minaie B, Wang B, et al. Computational and Experimental Study of Interfacial Bonding of Single-Walled Nanotube Reinforced Composites[J]. Computational Materials Science, 2004, 31: 225–236

    Article  Google Scholar 

  26. Lin R M, Lu C. Modeling of Interfacial Friction Damping of Carbon Nanotube-Based Nanocomposites[J]. Mechanical Systems and Signal Processing, 2010, 24: 2996–3012

    Article  Google Scholar 

  27. Stuart S J, Tutein A B, Harrison J A. A Reactive Potential for Hydrocarbons with Intermolecular Interactions[J]. The Journal of Chemical Physics, 2000, 112: 6472–6486

    Article  Google Scholar 

  28. Griebel M, Hamaekers J. Molecular Dynamics Simulations of the Elastic Moduli of Polymer-Carbon Nanotube Composites[J]. Computer Methods in Applied Mechanics Engineering, 2004, 193: 1773–1788

    Article  Google Scholar 

  29. Brenner D W, Shenderova O A, Harrison J A, et al. Second Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons[J]. Journal of Physics, 2002, 14: 783–802

    Google Scholar 

  30. Bohlen M, Bolton K. Molecular Dynamics Studies of the Influence of Single Wall Carbon Nanotubes on the Mechanical Properties of Poly (Vinylidene Fluoride)[J]. Computational Materials Science, 2013, 68: 73–80

    Article  Google Scholar 

  31. Griebel M, Hamaekers J. Molecular Dynamics Simulations of the Elastic Moduli of Polymer-Carbon Nanotube Composites[J]. Computer Methods in Applied Mechanics Engineering, 2004, 193: 1773–1788

    Article  Google Scholar 

  32. Gao S, Madre E. Characterization of Interphase Nanoscale Property Variation in Glass Fiber Reinforced Polypropylene and Epoxy Resin Composites[J]. Composite Part A: Applied Science and Manufacturing, 2002, 33: 559–576

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Yang  (杨庆生).

Additional information

Funded by the National Natural Science Foundation of China (Nos. 11172012 and 11472020)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, J., Yang, Q. & Lu, Y. Nature of the pull-out system of carbon nanorope/polyethylene composite and twisting effect on interfacial behavior. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 713–719 (2017). https://doi.org/10.1007/s11595-017-1657-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1657-z

Key words

Navigation