Skip to main content
Log in

Effect of sand content on strength and pore structure of cement mortar

  • Cementitious materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The effects of four sand contents on the compressive, flexural and splitting-tensile strength of cement mortars were evaluated. Moreover, we experimentally investigated the pore structure of cement mortar brought about by changing the sand content and water/cement ratio. The changes in the pore structure were quantified by measuring the porosity and pore size distribution obtained by using mercury intrusion porosimetry (MIP) technique. The test results show that the strengths of cement mortar increase with increasing sand content. It is also suggested that the traditional water/cement ratio law can be applied to cement mortar with different sand contents, provided that a slight modification is introduced. Sand content is an important parameter influencing the pore structure of cement mortar. Moreover, there is a good relationship between the pore structure and strength of cement mortar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hedegaard SE, Hansen TC. Modified Water/Cement Ratio Law for Compressive Strength of Fly Ash Concrete[J]. Mater. Struct., 1992, 25(5): 273–283

    Article  Google Scholar 

  2. Rao GA. Generalization of Abram’s Law for Cement Mortars[J]. Cem. Conc. Res., 2001, 31(3): 495–502

    Article  Google Scholar 

  3. Alexander AG, Milne TI. Influence of Cement Blend and Aggregate Type on Stress-strain Behavior and Elastic Modulus of Concrete[J]. ACI Mater. J., 1995, 92, (3): 227–235

    Google Scholar 

  4. Yang CC, Su JK. Approximate Migration Coefficient of Interfacial Transition Zone and the Effect of Aggregate Content on the Migration Coefficient of Mortar[J]. Cem. Conc. Research, 2002, 32(10): 1559–1565

    Article  Google Scholar 

  5. Sideris KK, Manita P, Sideris K. Estimation of Ultimate Modulus of Elasticity and Poisson Ratio of Normal Concrete[J]. Cem. Conc. Res., 2004, 26(6): 623–631

    Article  Google Scholar 

  6. Walker S, Bloem DL. Effect of Aggregate Size on Properties of Concrete[J]. ACI J., 1960, 57(9): 283–298

    Google Scholar 

  7. Zhou FP, Lydon FD, Barr BIG. Effect of Coarse Aggregate on Elastic Modulus and Compressive Strength of High Performance Concrete[J]. Cem. Conc. Res., 1995, 25(1): 177–186

    Article  Google Scholar 

  8. Babu DS, Badu KG, Tiong-Huang W. Effect of Aggregate Size on Strength and Moisture Migration Characteristics of Lightweight Concrete[J]. Cement & Concrete Composites, 2006, 28(6): 520–527

    Article  Google Scholar 

  9. Goble CF, Cohen MD. Influence of Aggregate Surface Area on Mechanical Properties of Mortar[J]. ACI Mater. J., 1992, 96(6): 657–662

    Google Scholar 

  10. Beshr H, Almusallam AA, Maslehuddin M. Effect of Coarse Aggregate Quality on the Mechanical Properties of High Strength Concrete[J]. Constr. Build. Mater., 2003, 17(2): 97–103

    Article  Google Scholar 

  11. Stock AF, Hannant DJ, Williams RIT. The Effect of Aggregate Concentration Upon the Strength and Modulus of Elastic of Concrete [J]. Mag. Conc. Res., 1979, 31(109): 225–234

    Article  Google Scholar 

  12. De Larrard F, Belloc A. The influence of Aggregate on the Compressive Strength of Normal-and High-strength Concrete[J]. ACI Mater. J., 1997, 94(5): 417–425

    Google Scholar 

  13. Giaccio G, Rocco C, Violini D, et al. High-strength Concrete Incorporating Different Coarse Aggregates[J]. ACI Mater. J., 2003, 89(3): 242–246

    Google Scholar 

  14. Strange PC, Bryant AH. The Role of Aggregate in the Fracture of Concrete[J]. J. Mater. Sci., 1979, 14(8): 1863–1868

    Article  Google Scholar 

  15. Kaplan MF. Flexural and Compressive Strength of Concrete as Affected by the Properties of Coarse Aggregate, ACI Journal, 1959, 55: 1193–1208

    Google Scholar 

  16. Swamy N, Rigby G. Dynamic Properties of Hardened Paste, Mortar and Concrete[J]. Mater. Struct., 1971, 4(1): 13–40

    Google Scholar 

  17. Yang CC, Huang R. Approximate Strength of Lightweight Aggregate Using Micromechanics Method[J]. Advan. Cem. Based Mater., 1998, 7(3): 133–138

    Article  Google Scholar 

  18. Giaccio G, Zerbino R. Failure Mechanisms of Concrete: Combined Effects of Coarse Aggregate and Strength Level[J]. Advan. Cem. Based Mater., 1998, 7(2): 41–48

    Article  Google Scholar 

  19. Fu TC, Yeih W, Chang JJ. The Influence of Aggregate Size and Binder Material on the Properties of Pervious Concrete[J]. Advan. Mater. Sci. Eng., 2014, 1–17

    Google Scholar 

  20. Perry C, Gillott JE. The Influence of Mortar-aggregate Bond Strength on the Behavior of Concrete in Uniaxial Compression[J]. Cem. Conc. Res., 1977, 7(5): 553–564

    Article  Google Scholar 

  21. Chen HJ, Yen T, Lia TP, et al. Determination of the Dividing Strength and Its Relation to the Concrete Strength in Lightweight Aggregate Concrete[J]. Cem. Conc. Compos., 1999, 21(1): 29–37

    Article  Google Scholar 

  22. Chi JM, Huang R, Yang CC, et al. Effect of Aggregate properties on the Strength and Stiffness of Lightweight Concrete[J]. Cem. Conc. Compos., 2003, 25(2): 197–205

    Article  Google Scholar 

  23. Patil SG, Bhattacharjee B. Size and Volume Relationship of Pore for Construction Materials[J]. J. Mater. Civ. Eng., 2008, 20(6): 410–418

    Article  Google Scholar 

  24. Lian C, Zhuge Y, Beecham S. The relationship Between Porosity and Strength for Porous Concrete[J]. Constr. Build. Mater., 2011, 25(11): 4294–4298

    Article  Google Scholar 

  25. Galle C. Effect of Drying on Cement-based Materials Pore Structure as Identified by Mercury Intrusion Porosimetry, A Comparative Study between Oven-, Vacuum-, and Freeze-drying[J]. Cem. Conc. Res., 2001, 31(10): 1467–1477

    Article  Google Scholar 

  26. Poon CS, Lam L, Wong YL. Effects of Fly Ash and Silica Fume on Interfacial Porosity of Concrete[J]. J. Mater. Civ. Eng., 1999, 11(3): 197–205

    Article  Google Scholar 

  27. Tislova R, Kozlowska A, Kozlowski R, et al. Porosity and Specific Surface Area of Roman Cement Pastes[J]. Cem. Conc. Res., 2009, 39: 950–956

    Article  Google Scholar 

  28. Bentur A. The Pore Structure of Hydrated Cementitious Compounds of Different Chemical Composition[J]. J. Amer. Ceram. Soc., 1980, 63(7–8): 381–386

    Article  Google Scholar 

  29. Cook RA, Hover KC. Mercury Porosimetry of Hardened Cement Pastes[J]. Cement & Concrete Research, 1999, 29: 933–943

    Article  Google Scholar 

  30. Olson RA, Neubauer CM, Jennings HM. Damage to the Pore Structure of Hardened Portland Cement Paste by Mercury Intrusion[J]. J. Amer. Ceram. Soc.y, 1997, 80(9): 2454–2458

    Article  Google Scholar 

  31. Adolphs J, Setzer MJ, Heine P, Changes in Pore Structure and Mercury Contact Angle of Hardened Cement Paste Depending on Relative Humidity[J]. Mater. Struct., 2002, 35(8): 477–486

    Article  Google Scholar 

  32. Alford NM, Rahman AA. An Assessment of Porosity and Pore Size in Hardened Cement Pastes[J]. J. Mater. Sci., 1981, 16(11): 3105–3114

    Article  Google Scholar 

  33. Moro F, Bohni H. Ink-bottle Effect in Mercury Intrusion Porosimetry of Cement-based Materials[J]. J. Colloid Interface Sci., 2002, 246(1): 135–149

    Article  Google Scholar 

  34. Zeng Q, Li K, Fen-chong T, et al. Pore Structure Characterization of Cement Pastes Blended with High-volume Fly-ash[J]. Cem. Conc. Res., 2012, 42(1): 194–204

    Article  Google Scholar 

  35. Zampini D, Jennings HM, Shah SP. Characterization of the Paste-Aggregate Interfacial Zone to the Fracture Toughness of Concrete[J]. J. Mater. Sci., 1995, 30(12): 3149–3154

    Article  Google Scholar 

  36. Neville AM. Aggregate Bond and Modulus of Elasticity of Concrete[J]. ACI Mater. J., 1997, 94(1): 71–74

    Google Scholar 

  37. Amparano FE, Xi Y, Roh YS. Experimental study on the Effect of Aggregate Content on Fracture Behavior of Concrete[J]. Eng. Fract. Mech., 2000, 67: 65–84

    Article  Google Scholar 

  38. Cordon WA, Gillespie HA. Variables in Concrete Aggregates and Portland Cement Paste which Influence the Strength of Concrete[J]. ACI J., 1963, 60(8): 1029–1052

    Google Scholar 

  39. Wu S, Chen X, Zhou J. Influence of Strain Rate and Water Content on Mechanical Behavior of Dam Concrete[J]. Constr. Build. Mater., 2012, 36(4): 448–457

    Article  Google Scholar 

  40. Atis CD. Carbonation-porosity-strength Model for Fly Ash Concrete[J]. J. Mater. Civ. Eng., 2004, 16(1): 91–94

    Article  Google Scholar 

  41. Akkaya Y, Peled Y, Picka JD, et al. Effect of Sand Addition on Properties of Fiber-reinforced Cement Composites[J]. ACI Mater. J., 2000, 97(3): 393–400

    Google Scholar 

  42. Grassl P, Wong HS, Buenfeld NR. Influence of Aggregate Size and Volume Fraction on Shrinkage Induced Micro-cracking[J]. Cem. Concr. Res., 2010, 40(1): 85–93

    Article  Google Scholar 

  43. Pope AW, Jennings HM. The Influence of Mixing on the Microstructure of the Cement Paste/Aggregate Interfacial Zone and on the Strength of Mortar[J]. J. Mater. Sci., 1992, 27(23): 6452–6462

    Article  Google Scholar 

  44. Shane JD, Mason TO, Jennings HM. Effect of the Interfacial Transition Zone on the Conductivity of Portland Cement Mortars[J]. J. Amer. Ceram. Soc., 2000, 83(5): 1137–1144

    Article  Google Scholar 

  45. Spanoudakis J, Young RJ. Crack Propagation in a Glass Particle-filled Epoxy Resin. Part I: Effect of Particle Volume Fraction and Size[J]. J. Mater. Sci., 1984, 19: 473–486

    Article  Google Scholar 

  46. Langley KR, Martin A, Ogin SL. The Effect of Filler Volume Fraction on the Fracture Toughness of a Model Food Composite[J]. Compos. Sci. Tech., 1994, 50(2): 259–264

    Article  Google Scholar 

  47. Odler I, Robler M. Investigation on the Relationship between Porosity, Structure and Strength of Hydrated Portland Cement Paste, (II) Effect of Pore Structure and of Degree of Hydration[J]. Cem. Conc. Res., 1985, 15(3): 401–410

    Article  Google Scholar 

  48. Balshin MY. Relation of Mechanical Properties of Powder Metals and Their Porosity and the Ultimate Properties of Porous-metal Ceramic Materials[J]. Canad. J. Civ. Eng., 1949, 67(5): 831–834

    Google Scholar 

  49. Kumar R, Bhattacharjee B. Porosity, Pore Size Distribution, and in situ Strength of Concrete[J]. Cem. Conc. Res., 2003, 33(1): 155–164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwu Bu  (卜静武).

Additional information

Founded by the National Natural Science Foundation of China (Nos. 51279054 and 51279052)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, J., Tian, Z., Zheng, S. et al. Effect of sand content on strength and pore structure of cement mortar. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 382–390 (2017). https://doi.org/10.1007/s11595-017-1607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1607-9

Key words

Navigation